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ABSTRACT 

 

Data fusion is the process of integrating information from multiple sources to produce 

specific, comprehensive, unified data about an entity. Data fusion is categorized as low level, 

feature level and decision level.  This research is focused on both investigating and developing 

feature- and decision-level data fusion for automated image analysis and classification.  The 

common procedure for solving these problems can be described as: 1) process image for region 

of interest’ detection, 2) extract features from the region of interest and 3) create learning model 

based on the feature data.  Image processing techniques were performed using edge detection, a 

histogram threshold and a color drop algorithm to determine the region of interest. The extracted 

features were low-level features, including textual, color and symmetrical features. For image 

analysis and classification, feature- and decision-level data fusion techniques are investigated 

for model learning using and integrating computational intelligence and machine learning 

techniques. These techniques include artificial neural networks, evolutionary algorithms, 

particle swarm optimization, decision tree, clustering algorithms, fuzzy logic inference, and 

voting algorithms.  This work presents both the investigation and development of data fusion 

techniques for the application areas of dermoscopy skin lesion discrimination, content-based 

image retrieval, and graphic image type classification.  
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1. INTRODUCTION 

 

1.1 BACKGROUND AND PROBLEM STATEMENT 

The analysis of medical images is essential in modern medicine. Both new challenges 

and opportunities arise for different phases of the clinical routine and image retrieval as the 

amount of not only patient data but also medical publications increase. This work uses state-of-

the-art data fusion techniques for the following three aspects: 

 Dermoscopy skin lesion discrimination 

 Content-based image retrieval 

 Graphic image type classification 

Data fusion is the process of integrating information from multiple sources to produce 

specific, comprehensive, unified data about an entity [1]. Data fusion is categorized as low-

level, feature-level, and decision-level. Low-level data fusion combines several sources of raw 

data to produce new raw data.  Feature-level data fusion combines the descriptive features 

extracted from multiple sensors, measuring either a similar or a dissimilar phenomenon into a 

single feature vector for discrimination purposes.  

Decision-level data fusion involves the fusion of a sensor using preliminary decisions, 

made from individual or multiple sensors and information sources. 

Techniques for data fusion include computational intelligence, machine learning, 

statistical estimation, and more. This research focused on developing both machine learning 

techniques and computational intelligence for data fusion.   

Machine learning is defined as computer program that “is said to learn from experience 

E with respect to some class of tasks T and performance measure P, if its performance at tasks in 

T, as measured by P, improves with experience E” [2]. The approaches of machine learning 

include decision tree learning, artificial neural network, clustering, and so forth.  Each approach 

can be overviewed as follows.  A decision tree is a decision support tool that uses a tree-like 

graph to illustrate the choices available to a decision maker, every possible choice with its 

estimated outcome being shown as a separate branch of the tree [3]. An artificial neural network 

can be viewed as a parallel and distributed processing system which consists of a huge number 

of simple, massively connected processors [4].  Clustering is the task of partitioning data objects 

(patterns, entities, instances, observances, and units) into a certain number of clusters (groups, 

subsets, or categories) so that the objects in the same cluster are more similar to each other than 

to those in other clusters [5].   
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Computational intelligence is a set of nature-inspired exploration into the adaptive 

mechanisms that enable intelligent behavior in complex and changing environments which 

includes evolutionary computation, swarm intelligence and fuzzy systems [6]. The concept of 

evolutionary computation is survival of the fittest: the weak may die while the elite move to the 

next level [7].  Swarm intelligence is the study of swarms of social organisms such as a flock of 

birds or a school of fish [8]. Fuzzy logic is a form of either many-valued logic or probabilistic 

logic; it deals with reasoning that is approximate rather than fixed and exact [9].   

Feature-level fusion involves the extraction of representative features from sensor data. 

These features combine into a single vector as the input to a classification approach based on 

neural networks,   clustering algorithms, and so on [1].  Current studies include the investigation 

of feature-level fusion using hand and face biometrics [10], feature-level data fusion for bimodal 

person recognition [11], feature-level data fusion for land mine detection [12], and so forth.  

Decision-level data fusion involves fusing sensors using preliminary decisions made from 

individual or multiple sensors and information sources. Examples of decision-level fusion 

methods include weighted decision methods (voting techniques) [13] and inference methods 

[14]. 

This work presents both the investigation and development of data fusion in not only 

feature-level and also decision-level fusion for a varied range of applications. Feature-level 

fusion techniques are explored for the skin cancer diagnosis and content-based image retrieval. 

These techniques include artificial neural network, evolutionary algorithm, particle swarm 

optimization, adaptive critic design, decision tree and clustering algorithms. Decision-level 

fusion approaches including fuzzy logic controller, fuzzy intersection/union, and voting 

algorithm are developed for graphic image type classification. 

 

1.2 SUMMARY OF CONTRIBUTIONS 

This dissertation consists of a number of journal papers and conference papers, as 

presented in the publication list. My unique contributions regarding solving the proposed three 

aspects are: 

Dermoscopy skin lesion discrimination. Basal cell carcinoma (BCC) is the most 

commonly diagnosed skin cancer in the USA. An automated image analysis and classification 

method for dermoscopy skin lesion discrimination was developed by applying a novel classifier 

(Adaptive Critic Design) in the feature-level data fusion. The representative features were first 

extracted from sensor data according to dermatologist’s suggestion. Those features were then 

combined into a single vector as the input to Adaptive Critic Design (ACD). ACD is a 

http://en.wikipedia.org/wiki/Many-valued_logic
http://en.wikipedia.org/wiki/Probabilistic_logic
http://en.wikipedia.org/wiki/Probabilistic_logic
http://en.wikipedia.org/wiki/Reasoning
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biologically-inspired reinforcement learning approach which can combine feature information 

from multiple sources.  ACD gives results superior to those from existing methods such as a 

backpropagation neural network. This technique can be generally applicable to structure 

detection that is sensitive to image parameters such as contrast. In addition, it is a useful means 

for global feature data fusion in order to improve the accuracy of pattern recognition.  

Furthermore, skin cancer discrimination was enhanced by adding information gathered from the 

patient and the physician, demonstrating the potential of data fusion in aiding the lesion 

diagnostic process.  

Content-based image retrieval. The detection of medical image artifacts, such as 

arrows, is important for highlighting both supplemental and context-based information. This 

information is helpful in improving biomedical information retrieval. Computational 

intelligence methods, including evolving artificial neural networks (EANNs) and evolving 

artificial neural networks ensembles (EANNEs), have been investigated in the feature level data 

fusion for arrow object discrimination. Both EANNs and EANNEs are hybrid artificial 

intelligence algorithms by combining evolutionary algorithm and particle swarm optimization 

with artificial neural network. EANNs are evolving into one of the best neural networks 

available. EANNEs are evolving into neural network ensembles, with the minimum correlation 

information among the ensembles. Both EANNs and EANNEs outperform the backpropagation 

NN, indicating the benefit of incorporating multiple neural networks for data fusion. EANNEs 

outperform EANN, as EANNEs play a better role in fusing the features within a large diversity 

and variety. 

Graphic image type classification. Automatic figure type identification is an important 

step toward improving both multimodal (text + image) information retrieval and clinical 

decision support applications. An automated image type classification was developed by 

applying a data fusion approach to combine information from both text and image sources 

believed to contain complementary information. First, feature-level fusion techniques were 

developed for image feature selection in biomedical images for chart classification. These 

techniques include Particle Swarm Optimization (PSO) and Evolutionary Algorithm (EA) 

paradigms used for feature selection, with Support Vector Machines (SVM) utilized as the 

fitness value determination. A hybrid EAPSO algorithm was invented for feature selection by 

combining the new individual generation functions of both EA and PSO, to attain the global 

minimum at high speed. Second, a decision-level fusion approach (fuzzy set intersection/union 

to improve graphic image type classification) was developed.  For each biomedical image, both 

its image features and its caption features were input into artificial neural network classifiers. 
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The classifiers’ outputs were characterized as fuzzy sets to determine the final classification 

result. This research demonstrates that data fusion techniques are useful in the feature-level data 

fusion to remove the negative related or unrelated features, while data fusion techniques are 

useful in the decision level data fusion to combine the resource information.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



www.manaraa.com

5 

 

 

PAPER 
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Technology (S&T), Rolla, MO, 65409, USA 

bStoecker & Associates, Rolla MO, 65401, USA 

cSkin and Cancer Associates, Plantation, FL, USA 

 

ABSTRACT 

Background: Basal cell carcinoma (BCC) is the most commonly diagnosed cancer in the USA. 

In this research, we examine four different feature categories used for diagnostic decisions, 

including patient personal profile (patient age, gender, etc.), general exam (lesion size and 

location), common dermoscopic (blue-gray ovoids, leaf-structure dirt trails, etc.), and specific 

dermoscopic lesion (white/pink areas, semitranslucency, etc.). Specific dermoscopic features are 

more restricted versions of the common dermoscopic features. 

Methods: Combinations of the four feature categories are analyzed over a data set of 700 

lesions, with 350 BCCs and 350 benign lesions, for lesion discrimination using neural network-

based techniques, including evolving artificial neural networks (EANNs) and evolving artificial 

neural network ensembles. 

Results: Experiment re sults based on 10-fold cross validation for training and testing the 

different neural network-based techniques yielded an area under the receiver operating 

characteristic curve as high as 0.981 when all features were combined. The common 

dermoscopic lesion features generally yielded higher discrimination results than other individual 

feature categories. 

Conclusions: Experimental results show that combining clinical and image information provides 

enhanced lesion discrimination capability over either information source separately. This 

research highlights the potential of data fusion as a model for the diagnostic process. 
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1. INTRODUCTION 

Basal cell carcinoma (BCC), characterized as a slow-growing skin malignancy 

originating within the basal layer of the epidermis, is the most commonly diagnosed cancer with 

an estimated 3 million new cases annually in the USA [1]. In the consultation process when a 

patient exhibits a skin lesion, physicians gather patient information, determine general 

information about the skin lesion, and may use devices such as a dermatoscope (3Gen LLC, San 

Juan Capistrano, CA, USA; Heine Optotechnik, Herrsching, Germany) for determining a 

preliminary diagnosis. Currently, dermatopathology examination of a biopsy is used as the 

diagnostic gold standard. 

In this research, the diagnostic process, here characterized as BCC versus benign lesion 

discrimination is examined based on information gathered from the patient, physician, and the 

dermoscopic image of the lesion. There are several BCC structures identifiable using 

dermoscopy that strongly suggests a BCC diagnosis. These have been incorporated into the 

BASAL acronym: Blue-gray ovoids and globules, Arborizing telangiectasia, 

Semitranslucency/Spoke wheel structures, Atraumatic ulcerations, and Leaf-like structures/dirt-

trails [2]. Figure 1(a)–(c) presents dermoscopic lesion image examples of these structures. 

While there have been numerous studies based on dermoscopic image feature analysis 

for pigmented lesion discrimination, few studies have specifically addressed BCC versus benign 

lesion discrimination by a classifier [3-6]. In those studies, BCC lesion discrimination was 

focused on the detection and analysis of particular dermoscopic features, including 

telangiectasia [3, 4], leaf-dirt trails [5], and semitranslucency [6]. This research explores the 

efficacy of fusing clinical and dermoscopic features to enhance skin lesion discrimination 

capability. Four categories of features were investigated in this research for BCC discrimination: 

(i) patient personal profile descriptors, (ii) general exam descriptors, (iii) common dermoscopic 

skin lesion image features associated with BCC, and (iv) specific dermoscopic skin lesion image 

features used for detecting uncommon BCC presentations. Combinations of these feature 

categories are examined for skin lesion discrimination using neural network techniques, 

including standard backpropagation neural networks, evolving artificial neural networks 

(EANNs), and EANN ensembles (EANNEs). 

 

http://onlinelibrary.wiley.com/doi/10.1111/j.1600-0846.2012.00630.x/full#srt630-bib-0001
http://onlinelibrary.wiley.com/doi/10.1111/j.1600-0846.2012.00630.x/full#srt630-bib-0002
http://onlinelibrary.wiley.com/doi/10.1111/j.1600-0846.2012.00630.x/full#srt630-fig-0001
http://onlinelibrary.wiley.com/doi/10.1111/j.1600-0846.2012.00630.x/full#srt630-bib-0003
http://onlinelibrary.wiley.com/doi/10.1111/j.1600-0846.2012.00630.x/full#srt630-bib-0003
http://onlinelibrary.wiley.com/doi/10.1111/j.1600-0846.2012.00630.x/full#srt630-bib-0005
http://onlinelibrary.wiley.com/doi/10.1111/j.1600-0846.2012.00630.x/full#srt630-bib-0006
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Figure 1. Examples of BCC BASAL structures visible using dermoscopy. All images are contact 

dermoscopy images except b. (a) Blue-gray ovoids, Arborizing telangiectasia, and dirt trails 

(rudimentary Leaf-like structures), (b) Semitranslucency, non-contact dermoscopy (inset-contact 

dermoscopy), and (c) Atraumatic ulceration, with similar ulcer-crust. 

 

 

The remainder of the paper is presented in the following sections:  

1. Description of feature categories 

2. Discrimination algorithms 

3. Experimental procedure 

4. Results and discussion 

5. Conclusion. 
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2. DESCRIPTION OF FEATURE CATEGORIES 

Table 1 provides an overview of the four overall feature groups. The personal profile 

descriptors used are patient age, gender, race/ethnicity, and geographic location. Age was given 

in a binary format for either older than or younger than (and including) 50 years of age. 

Race/ethnicity is quantized as either non-Hispanic or Hispanic. The geographic location is based 

on clinic location, either above (Missouri, Connecticut) or below (Florida) the Tropic of Cancer. 

The final general exam attribute was lesion location. The third category of features are basic and 

common BCC dermoscopic descriptors BASAL features including blue-gray ovoids, vessels, 

pink veil (a more general form of semitranslucency), atraumatic ulcerations, and leaf-dirt trails. 

The fourth category of features comprises more specific dermoscopic features found to be 

present in this set of 350 BCCs. For both the common and specific dermoscopic features, a 

dermatologist (W.V.S.) identified the presence or absence of each feature within the lesion. Two 

of these specific features have been previously described and have high specificity: arborizing 

telangiectasia and semitranslucency [2, 7]. We have determined in this research other features 

with high specificity found in BCC that have not been previously described. These features are 

developed here to detect unusual BCC presentations such as white areas, pink areas, purple 

blotches, pale areas, large (majority of lesion) ulcer/crust plus pink regions, and majority white 

and pink regions. The common and specific dermoscopic features in each feature group are 

shown in Table 1. 

The experimental data examined to evaluate the discrimination capability of the 

different feature categories includes images acquired from four clinic locations across the USA: 

The Dermatology Center (Rolla, MO, USA), Drugge & Sheard (Stamford, CT, USA), Skin & 

Cancer Associates (Plantation, FL, USA) and Columbia Dermatology & Mohs Skin Cancer 

Surgery. (Columbia, MO, USA). Three hundred and fifty lesions with a BCC diagnosis and 350 

benign lesions were used as the test set. Benign lesions consisting of 80 acquired nevi, 71 

seborrheic keratoses, 60 actinic keratoses, 51 lentigines, 15 congenital nevi, 10 lichen planus-

like keratoses, 9 sebaceous hyperplasia, and 54 lesions of miscellaneous types constituted the 

competitive set. 

 

 

 

 

 

http://onlinelibrary.wiley.com/doi/10.1111/j.1600-0846.2012.00630.x/full#srt630-tbl-0001
http://onlinelibrary.wiley.com/doi/10.1111/j.1600-0846.2012.00630.x/full#srt630-bib-0002
http://onlinelibrary.wiley.com/doi/10.1111/j.1600-0846.2012.00630.x/full#srt630-tbl-0001
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Table 1. Overview of feature groups examined for lesion discrimination. 

Patient Personal 

profile descriptors 

General exam 

descriptors 

Common BCC features Specific BCC features 

Age Size Blue-gray ovoids Arborizing telangiectasia 

Gender Lesion 

Location 

Pink veil White/pink areas 

Race/Ethnicity N/A Vessels Semitranslucency 

Geographic 

Location 

N/A Leaf-Dirt Trails Purple Blotches 

N/A N/A Atraumatic ulcerations Pale Areas 

N/A N/A N/A Majority of Lesion 

N/A N/A N/A Ulcer/Crust plus Pink 

Regions 

N/A N/A N/A Majority Pink/White 

Regions 

 

 

Table 2 presents the different feature group combinations examined for BCC versus 

benign lesion discrimination based on the four feature categories. Column 1 gives the feature 

combination, Column 2 provides the feature categories included in the feature combination, 

Column 3 lists the total number of features for the feature combination, and Column 4 gives the 

multilayer perceptrons neural network architecture used for lesion discrimination for the 

different feature combinations. 

 

 

 

 

 

 

 

 

 

http://onlinelibrary.wiley.com/doi/10.1111/j.1600-0846.2012.00630.x/full#srt630-tbl-0002
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Table 2.  Feature combinations for lesion discrimination. 

Feature 

Combination 

Feature Groups Included Total 

Number of 

Features 

Neural 

Network 

Architecture 

1 Personal profile descriptors 4 5x5x1 

2 General exam descriptors 2 3x5x1 

3 Common lesion features 5 6x5x1 

4 Specific lesion features 6 7x5x1 

5 Personal profile descriptors, general exam 

descriptors 

6 7x5x1 

6 Personal profile descriptors, common 

lesion features 

9 10x5x1 

7 Personal profile descriptors, specific 

lesion features 

10 11x5x1 

8 General exam descriptors, common lesion 

features 

7 8x5x1 

9 General exam descriptors, specific lesion 

features 

8 9x5x1 

10 Common lesion features, specific lesion 

features 

11 12x5x1 

11 Personal profile descriptors, general exam 

descriptors, common lesion features 

11 12x5x1 

12 Personal profile descriptors, general exam 

descriptors, specific lesion features 

12 13x5x1 

13 Personal profile descriptors, common 

lesion features, specific lesion features 

15 16x5x1 

14 General exam descriptors, common lesion 

features, specific lesion features 

13 14x5x1 

15 Personal profile descriptors, general exam 

descriptors, common lesion features, 

specific lesion features 

17 18x5x1 
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3. DISCRIMINATION ALGORITHMS  

Using the different combinations of feature categories given in Table 2, EANN's and 

EANNE's are examined for BCC versus benign lesion discrimination. The implementation for 

each algorithm is given in this section. 

 

3.1 EVOLVING ARTIFICIAL NEURAL NETWORKS (EANN’s) 

EANN's refer to a class of artificial neural networks (ANN's) in which both evolution 

and learning are fundamental forms of adaption. Evolutionary algorithms (EAs) can be used to 

train the connection weight, design the architecture, and select the input features of the ANN's. 

In this research, EAs using particle swarm optimization (PSO) [8] and genetic algorithm (GA) 

[9] for neural network training are investigated. 

PSO is the study of swarms of social organisms such as a flock of birds, in which each 

particle in the swarm moves toward its previous best location (Pbest) and global best location 

(Gbest) at each time step [8]. The PSO algorithm utilized in this study is presented in detail in 

[10] and is overviewed as follows. We initialize M particles, where each particle is a D-

dimensional vector with each element of the vector representing a connection weight and D 

being the total number of weights. For example, feature combination 1 from Table 2 has an 

architecture of 5 × 5 × 1. The total number of weights (D) is 11 (5 + 5 + 1) and each element in 

this D-dimensional vector is the connection weight. Furthermore, the M particles represent M 

ANNs. 

The connection weights in each ANN are updated when the elements in each particle 

are trained as follows. The initial value for each element of the vector is randomly set at a value 

from –0.1 to 0.1. In each training time step, the element's value of each particle is updated 

toward Pbest and Gbest. Pbest is the particle of the M particles that gives the least root mean 

square error (RMSE) between the current training epoch and the previous training epoch. Gbest 

is the particle among the M particles which generates the minimum RMSE, where the RMSE is 

calculated based on the difference between the ground truth and the actual ANN's output. The 

details for the updating process are given in [8]. The same process is repeated for N epochs. The 

final Gbest particle is selected for the final ANN weights for the test vector. 

GAs use the “survival of the fittest” concept where the weak may die and elites are able 

to progress to the next level [9]. The GA approach investigated here is presented in detail in 

[10]. We initialize M parents, where each parent is a D-dimensional vector with each element of 

the vector representing a connection weight, with D being the total number of weights. In a 

http://onlinelibrary.wiley.com/doi/10.1111/j.1600-0846.2012.00630.x/full#srt630-tbl-0002
http://onlinelibrary.wiley.com/doi/10.1111/j.1600-0846.2012.00630.x/full#srt630-bib-0008
http://onlinelibrary.wiley.com/doi/10.1111/j.1600-0846.2012.00630.x/full#srt630-bib-0009
http://onlinelibrary.wiley.com/doi/10.1111/j.1600-0846.2012.00630.x/full#srt630-bib-0008
http://onlinelibrary.wiley.com/doi/10.1111/j.1600-0846.2012.00630.x/full#srt630-bib-0010
http://onlinelibrary.wiley.com/doi/10.1111/j.1600-0846.2012.00630.x/full#srt630-tbl-0002
http://onlinelibrary.wiley.com/doi/10.1111/j.1600-0846.2012.00630.x/full#srt630-bib-0008
http://onlinelibrary.wiley.com/doi/10.1111/j.1600-0846.2012.00630.x/full#srt630-bib-0009
http://onlinelibrary.wiley.com/doi/10.1111/j.1600-0846.2012.00630.x/full#srt630-bib-0010
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similar fashion defined for the PSO configuration, M parents represent M ANNs. The initial 

value for each element of the vector is randomly set from –0.1 to 0.1. In each training step, these 

M parents generate M offspring after implementing random selection, uniform crossover and a 

mutation operation. Then, the next M parents are selected based on whether the parents or their 

offspring minimize the RMSE. The same process is repeated for N epochs. From the final parent 

pool, the parent which minimizes the RMSE is selected for the final ANN weights for the test 

vectors. 

 

3.2 EVOLVING ARTIFICIAL NEURAL NETWORK ENSEMBLES (EANNE’s)  

Neural network ensembles provide an approach for using and combining the outputs 

from several networks, with each ANN having the same inputs and generating its own outputs 

[11]. The purpose of EANNs is to make use of the whole population of ANNs rather than a 

single one. Training the network ensembles and determining the final output from the network 

ensembles are two main components for EANNEs design. 

Negative correlation learning [12, 13] is implemented to train neural network ensembles 

in order to minimize the mutual informal among the networks. We initialize an ensemble with M 

ANNs with the initial weights in each ANN randomly set to a value from –0.1 to 0.1. In each 

training time step, each ANN in the ensemble is trained for a certain number of epochs using 

negative correlation learning firstly. Then, M offspring ANNs will be created by using selection, 

crossover, and a mutation operation in GA and replacement of the worst ANNs. The same 

process is repeated for N times. 

For the final output determination, there are several criteria such as averaging, winner-

taking-all and voting for combining the outputs. Here we simply choose averaging to deliver the 

final output as shown in Eq. (1). 

 

       
 

 
∑   

 
                                                                                                           (1)   

                                                                                    

where M is the number of the individual ANNs in the ensemble,    is the output for each ANN.    

 

 

 

 

 

 

http://onlinelibrary.wiley.com/doi/10.1111/j.1600-0846.2012.00630.x/full#srt630-bib-0011
http://onlinelibrary.wiley.com/doi/10.1111/j.1600-0846.2012.00630.x/full#srt630-bib-0012
http://onlinelibrary.wiley.com/doi/10.1111/j.1600-0846.2012.00630.x/full#srt630-disp-0001
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4. EXPERIMENTS PROCEDURE 

Fifteen different feature combinations were investigated as inputs to the neural network 

architectures. The feature combinations and the neural network architectures for the EANN 

approach trained using the GA algorithm, the EANN approach trained using the PSO algorithm, 

the EANNE approach, and standard backpropagation ANN are given in Table 2. Each neural 

network architecture includes the total number of features for the feature combination and one 

bias as the inputs to each classifier algorithm. Each neural network architecture from Table 2 

includes five nodes in a hidden layer and one node in the output layer. The input and output 

layers use linear transfer functions, and the hidden layer utilizes sigmoid transfer functions. A 

10-fold cross validation methodology is used for generating training/test sets for each neural 

network's architecture [13]. The same training/test sets from the cross-validation process are 

applied to all feature combinations and classification algorithms presented. The 10-fold cross 

validation process is repeated five times for each feature combination. Classification results are 

based on averaging the area under receiver operating characteristic (ROC) curves [14] generated 

for each of the 10-test sets over the five separate 10-fold cross validation sets. The area under 

the ROC curve was utilized as the classification measure in this research because the area under 

the ROC curve does not require selecting a decision boundary or threshold to determine 

detection accuracy. 

 

 

 

 

 

 

 

 

 

 

 

 

http://onlinelibrary.wiley.com/doi/10.1111/j.1600-0846.2012.00630.x/full#srt630-tbl-0002
http://onlinelibrary.wiley.com/doi/10.1111/j.1600-0846.2012.00630.x/full#srt630-tbl-0002
http://onlinelibrary.wiley.com/doi/10.1111/j.1600-0846.2012.00630.x/full#srt630-bib-0013
http://onlinelibrary.wiley.com/doi/10.1111/j.1600-0846.2012.00630.x/full#srt630-bib-0014
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5. RESULTS AND DISCUSSIONS 

Table 3 presents the average area under the ROC curve results over the five sets of 10-

fold cross validation test sets for the different feature combinations and discrimination 

algorithms examined. BP denotes the standard backpropagation ANN algorithm. EANN-GA 

and EANN-PSO represent the EANN neural network approaches using the GA and PSO 

methods for neural network training, respectively. 

 

 

Table 3.  Average area under the ROC curve discrimination results for different feature and 

discrimination algorithm combinations.   

Feature Combination Discrimination Algorithm 

 BP EANNE EANN-GA EANN-PSO 

1 0.612 0.613 0.604 0.607 

2 0.670 0.704 0.739 0.746 

3 0.667 0.823 0.812 0.818 

4 0.841 0.774 0.799 0.712 

5 0.632 0.794 0.815 0.837 

6 0.830 0.924 0.909 0.928 

7 0.809 0.890 0.879 0.894 

8 0.822 0.927 0.928 0.941 

9 0.830 0.909 0.910 0.941 

10 0.710 0.853 0.888 0.937 

11 0.828 0.934 0.918 0.950 

12 0.842 0.913 0.901 0.942 

13 0.890 0.970 0.946 0.974 

14 0.904 0.973 0.954 0.977 

15 0.897 0.972 0.948 0.981 

 

 

Several conclusions can be obtained from Table 3. First, the EANN algorithm using 

PSO neural network training typically yielded the highest overall area under the ROC curve 

results from the four discrimination algorithms investigated. Second, using all features (Feature 

http://onlinelibrary.wiley.com/doi/10.1111/j.1600-0846.2012.00630.x/full#srt630-tbl-0003
http://onlinelibrary.wiley.com/doi/10.1111/j.1600-0846.2012.00630.x/full#srt630-tbl-0003
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combination 15) gave the highest overall discrimination results, with an area under the ROC 

curve of 0.981 for the EANN-PSO approach. Feature combinations 13–15 yielded comparable 

results for the EANNE, EANN-GA, and EANN-PSO classification methods, with Feature 

combination 14 (general exam descriptors, common dermoscopic lesion features, and specific 

dermoscopic lesion features) providing slightly higher results than using all features (Feature 

combination 15). This is not a surprising result since the personal profile descriptors (Feature 

combination 1) yielded the overall lowest BCC discrimination results compared to the other 

individual feature groups. Third, inspecting the individual feature categories, the common 

dermoscopic lesion features yielded higher discrimination results than the other feature 

categories, except for the standard back propagation method. The personal profile descriptors 

gave consistently lower discrimination results than the other feature categories. Size and 

location information (general exam descriptors) and specific dermoscopic lesion features gave 

more discerning discrimination information than personal profile descriptors for all 

classification algorithms examined. 
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6. CONCLUSIONS 

In this research, BCC versus benign lesion discrimination was explored using four types 

of clinical and dermoscopic lesion image features: patient personal profile, general exam, 

common dermoscopic image features associated with BCC, and specific dermoscopic image 

features with uncommon BCC presentations. Lesion discrimination was performed for different 

combinations of these features using EANNs and EANNEs architectures. Experiment results 

showed an area under the ROC curve as high as 0.981 when all features were combined. 

Common dermoscopic lesions features generally gave higher discrimination results than other 

individual feature categories. Overall, experimental results highlight that combining clinical and 

image information enhances lesion discrimination capability over either information source 

separately, demonstrating the potential of data fusion in aiding the lesion diagnostic process. 
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ABSTRACT 

Background: Basal cell carcinoma (BCC) is the most common cancer in the US. Dermatoscopes 

are devices used by physicians to facilitate the early detection of these cancers based on the 

identification of skin lesion structures often specific to BCCs. One new lesion structure, referred 

to as dirt trails, has the appearance of dark gray, brown or black dots and clods of varying sizes 

distributed in elongated clusters with indistinct borders, often appearing as curvilinear trails. 

Methods: In this research, we explore a dirt trail detection and analysis algorithm for extracting, 

measuring, and characterizing dirt trails based on size, distribution, and color in dermoscopic 

skin lesion images. These dirt trails are then used to automatically discriminate BCC from 

benign skin lesions. 

Results: For an experimental data set of 35 BCC images with dirt trails and 79 benign lesion 

images, a neural network-based classifier achieved a 0.902 area under a receiver operating 

characteristic curve using a leave-one-out approach. 

Conclusion: Results obtained from this study show that automatic detection of dirt trails in 

dermoscopic images of BCC is feasible. This is important because of the large number of these 

skin cancers seen every year and the challenge of discovering these earlier with instrumentation. 

Key words: basal cell carcinoma – image analysis – dirt trails –neural network – dermoscopy 

 

  

 

 



www.manaraa.com

20 

 

 

1. INTRODUCTION 

Basal cell carcinoma (BCC), a slowly growing skin malignancy, is the most common 

cancer, with an estimate of 3 million new cases annually in the US [1].  To allow early detection 

of these skin cancers, physicians employ a device called a dermatoscope (3Gen LLC, San Juan 

Capistrano, CA; Heine Optotechnik, Herrsching, Germany).  Classic basal cell carcinoma 

structures, visible and measurable with the dermatoscope, have been summarized by the 

BASAL acronym:  Blue-gray ovoids and globules, Arborizing telangiectasia, Semitranslucency 

/ Spoke wheel structures, Atraumatic ulcerations, and Leaf-like structures [2]. One newly 

described feature is brown to black dots/globules, which were found in 132 cases (21.7%) of a 

series of 609 basal cell carcinomas [3].  The distribution of these tiny pigmented structures has 

not been previously characterized.  In one series of 351 basal cell carcinomas in a previous 

study, we found 46 cases (13.1%) of 351 BCCs to have the appearance of dark gray, brown or 

black dots and clods of varying sizes distributed in elongated clusters with indistinct borders, 

often appearing as curvilinear trails.  These clustered objects may be characterized as dirt trails.  

Figure 1 gives two examples of dirt trails present in dermoscopy skin lesion images.  In this 

research, we explore a dirt trail detection and analysis algorithm for extracting, measuring, and 

characterizing dirt trails based on size, distribution, and color in dermoscopic skin lesion 

images.  These dirt trails are then used to automatically discriminate basal cell carcinoma from 

benign skin lesions. The following sections of the paper include: II. Methodology, III. 

Experimental Results, IV. Conclusion, and References.   

 

 

  

Figure 1. Dirt trail examples in dermoscopic skin lesion images, shown by arrows, with dirt 

trails containing dots and clods of varying sizes. 
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2. METHODOLOGY 

2.1 DATA SET DESCRIPTION  

The image set used for this study includes contact, non-polarized dermoscopic images 

of 35 basal cell carcinomas (BCCs) with dirt trail areas and 79 non-BCC benign lesions 

collected from two clinics:  The Dermatology Center, Rolla, Missouri; and Skin and Cancer 

Associates, Plantation, Florida.  All lesions with any dermoscopy features of malignancy and 

any benign lesions for which there was any uncertainty were biopsied.  All images were contact, 

non-polarized dermoscopy images taken with a Sony DSC-W70 7.2 megapixel digital camera 

with a 3Gen DermLite Fluid dermoscopy attachment (3Gen LLC, San Juan Capistrano, CA).   

The 79-image competitive set to which the BCC set was compared consisted of a variety of 

lesions encountered in the clinic during the same period in which the BCC images were 

acquired, included 38 actinic keratoses (pre-cancers), 15 acquired nevocellular nevi (benign 

moles),  9 cases of sebaceous hyperplasia, and 15 cases of other benign diagnoses.   

 

2.2 DIRT TRAIL DETECTION ALGORITHM OVERVIEW 

An overview of the dirt trail detection algorithm is given in Figure 2.  First, for the 

dermoscopy image data set, the individual red, green and blue (R, G, B) color planes were used 

for skin lesion analysis.  Next, a Gaussian bandpass filter was applied to each color plane.  To 

find the small dirt trail dots and clods, the bandpass-filtered image was next subtracted from 

each 3x3 median-filtered image.  A scalarized Otsu threshold was then applied, followed by hair 

and bubble noise filtering.  Features were determined for the resultant objects remaining in the 

mask.  A backpropagation neural network using a leave-one-out method was applied to these 

features to determine presence or absence of dirt trails.  The dirt trail detection algorithm, 

feature extraction and lesion discrimination are presented in detail in sections II.3 and II.4, 

respectively.     
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3. DIRT TRAIL DETECTION ALGORITHM 

3.1  GAUSSIAN BANDPASS FILTER  

The first step in the dirt trail detection algorithm is to obtain the individual R, G, and B 

color planes for the skin lesion image (Figure 3).  The second step is to apply Gaussian bandpass 

filtering to the individual color planes.  A Gaussian lowpass filter, denoted as H, defined for 

each pixel position (u,v) is constructed and is given in Eqs. 1 and 2[4]: 
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where M and N represent the width and height of the image and (M/2, N/2) is the center of the 

frequency rectangle.  H(u,v) is the resulting lowpass filtered image based on the value for   .  

Two different Gaussian lowpass filters were determined empirically to find dirt trail objects by 

setting    to be 40 and 100.  The difference between these lowpass filters, denoted as W(u,v), 

represents the bandpass filter, as given in Eq. (3): 
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Figure 4 shows the representation for the bandpass filter W.  W is applied to the spatial 

frequency domain representation from the discrete Fourier transform for each of the color plane 

images for the skin lesion (see Figure 3).   The Gaussian filtered images for the R, G, and B 

planes are determined based on the frequency domain and converted to the spatial domain.  The 

resulting bandpass images for the R, G, and B planes are denoted as   ,   , and    

respectively.  Figure 5 presents examples of the bandpass filter process for each color plane, 

with the original color plane image on the left side and the filtered image on the right side.   
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Figure 2. Overview of the dirt trail detection algorithm. 

 

 

     

(a)                                              (b)                                                 (c) 

Figure 3. RGB plane. (a) Red plane. (b) Green plane. (c) Blue plane.  

 

 

 

Figure 4. Gaussian bandpass filter representation in the spatial frequency domain. 
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(a) 

 
(b) 

 
(c) 

Figure 5.  Bandpass-filtered images converted to spatial domain for R, G, and B planes. (a) Red 

plane. (b) Green plane. (c) Blue plane.  The original color plane images are on the left, and the 

filtered images   ,   , and     are on the right.   

 

 

3.2 MEDIAN FILTER    

Since the dirt trail resembles small salt-and-pepper noise, a 3x3 median filter is applied 

to each original color plane image, with median filter results shown in Figure 6 for the 

individual color plane images from Figure 3. Let   ,  , and    denote the median-filtered 

images for the R, G, and B color planes, respectively. 
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                                         (a)                                                           (b) 

 

 
 (c) 

Figure 6. Median filter output images from R, G, B planes. (a) FR, (b) FG, (c) FB.  

 

 

3.3 IMAGE SUBTRACTION  

The small dirt trail objects are found by computing the difference between the bandpass 

filtered image and the median filtered image for each color plane.  Let   ,  , and   represent 

the difference images for the R, G, and B color planes, respectively, with          ,      

and    are similarly defined.  This corresponds to subtracting the corresponding color plane 

images, Figure 5, from the median filtered images, Figure 6. 

 

3.4 HISTOGRAM PROCESSING  

Using the difference images   ,  , and    for the pixels inside lesion border, the Otsu’s 

method is implemented for these pixels to find the histogram threshold [5], with the threshold 

multiplied by a scalar of 2, determined empirically from the experimental data set,  in order to 

increase the sensitivity of dirt trail detection.  Let   ,   , and   denote the threshold images for 

the R, G, and B color planes, respectively.  These are shown in Figure 7.   
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          (a)                                               (b)                                                (c) 

Figure 7. Output images from scalarized Otsu’s method for R, G, B planes. 

(a)   , (b)  , (c)  . 

 

 

3.5 LOGIC OPERATION 

In order to extract dirt trail-like objects, the threshold images for the different color 

planes are merged using a logical AND operation, as given in equation 4 and denoted as A.  

Figure 8 gives an AND image example for the threshold images from Figure 7.   

                                                                                                                                   (4) 

                                         

 

 

Figure 8. Otsu’s output image A after logical AND of the threshold color plane images.  

 

 

3.6 NOISE FILTERING FOR HAIRS AND BUBBLES 

The logical AND of the threshold images provides an initial mask for dirt trail-like 

objects.  A mathematical morphological-based approach was applied in order to filter hairs and 

bubbles commonly observed in dermoscopy skin lesion images [6].  Let B represent the 

resulting hair and bubble objects detected from A.  Then, the resultant mask is given by     

 . 
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3.7 NOISE FILTERING FOR ISOLATED NOISE 

A secondary noise filter was applied to R in order to remove isolated objects I.  This 

step was motivated by the fact that dirt trails consist of a cluster of objects (black dots and 

clods).  Each object in R was given a blob label.  All objects within an empirically determined 

radius of 300 pixels of the object’s centroid were counted.  If the number of objects within this 

radius was less than 10, the isolated noise object I was removed from R, to create the final dirt 

trail mask      .  Let K represent the final dirt trail mask after performing the clustering 

operation.  An example image is given in Figure 9, with overlays on the original color image in 

(a) showing the mask R after hair and bubble removal and (b) the dirt trail mask K after hair and 

bubble and isolated object removal. 

 

 

 

             (a)                                                                     (b) 

Figure 9. Image overlay.  (a) Image overlay R, after hair and bubble removal. (b) Dirt trail 

image overlay K after isolated object removal.  
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4. CLASSIFIER INPUT FEATURES AND CLASSIFIER METHODOLOGY 

4.1 FEATURES COMPUTED FOR LESION DISCRIMINATION  

Using the final dirt trail mask K from the previous section and the RGB skin lesion 

image, nine features were calculated from each dirt trail mask for each image for lesion 

discrimination, as shown in Table 1. These nine features were selected from known dirt trail 

features—they are dark elongated areas within a relatively bright, pink area of the BCC.    

 

 

Table 1. Descriptions for Dirt Trail Dermoscopic Features 

Feature  Description of features for 

objects within lesion 

Meaning p-val,  

Wald Chi-sq *  

OBN Number of objects  BCC have more dirt trails 0.3301* n.s. 

AREA_AV Average area of objects  BCC have clods in trails 0.4335 n.s. 

MAX_EC Maximum eccentricity of 

objects: ratio of elliptical axes 

Dirt trail objects are longer  0.1902 n.s. 

AVE_EC Average eccentricity of objects: 

ratio of elliptical axes 

Dirt trail objects are longer  > 0.5  n.s. (feature 

not selected) 

RED_AV Average red value of objects  BCC trails are  darker   0.0689  n.s. 

GREEN_AV Average green value of objects BCC trails are  darker 0.0108 

BLUE_AV Average blue value of objects BCC trails are darker  0.0085 

REL_BLUE Ratio of BLUE_AV to average 

blue surrounding object 

BCC surrounds are pink 0.2826 n.s. 

GR/BLUE Ratio GREEN_AV/ BLUE_AV BCC objects are greener 

(brighter) 

0.1232 n.s. 

*p-values from SAS model for all variables in logistic regression model with p < 0.5, maximum 

likelihood estimate,  Wald Chi-sq.  

 

 

4.2 CLASSIFIER DESCRIPTION  

The dirt trail detection algorithm and lesion features presented in the previous section 

were examined for BCC versus benign lesion discrimination in the data set of 35 BCC images 

with dirt trails and 79 benign lesion images described above.  BCC versus benign skin lesion 

discrimination was done based on a standard backpropagation neural network classifier.  For the 

neural network classifier, an architecture of 11x5x1 was used:  10 features and a bias for the 

input layer, 5 nodes in a hidden layer, and one output was employed.  Linear transfer functions 

were used for the input and output layers, and sigmoid transfer functions were utilized in the 
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hidden layer.  A leave-one-out methodology was used for training and testing the neural network 

with each network being trained for a maximum of 200 epochs (on-line weight updating) or 

RMSE < 0.001.  Discrimination results were generated and examined using a receiver operating 

characteristic (ROC) curve, varying the neural network threshold and computing the sensitivity 

vs. 1-specificity (true positive and false negative rates) at each threshold value.   
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5. EXPERIMENTAL RESULTS 

5.1 DIRT TRAIL MASK EXAMPLES  

Figure 10 presents the dirt trail detection masks for a BCC lesion and a benign lesion.  

As observed in Figure 10, the detection algorithm finds dirt trail regions with some false 

positive areas.  Features are computed based on the dirt trail masks found from the BCC and 

benign lesion data set.  Ideally, the dirt trail mask is empty for the benign lesions.  We found 

that 51 of the 79 benign lesions contained false positive objects similar to dirt trails.  

Accordingly, features are calculated based on the generated dirt trails mask determined for each 

lesion image. 

   

5.2 FEATURE ANALYSIS USING LOGISTIC REGRESSION  

Statistical analysis using Wald Chi-Square maximum likelihood estimates [7] was 

performed on the features computed for the BCC and benign lesions for objects found in the 

experimental test set of lesions in order to evaluate the discrimination capability of those 

features. Table 1 presents the statistical results for these features for the nine features analyzed.    

The features are shown in the order selected by logistic regression, using SAS software 

(SAS Institute, Cary, NC), with the features OBN, the number of objects, selected first.  Eight of 

the nine features were included in the model, with only one feature, AVE_EC, the average 

eccentricity of the objects, not selected.  The other eight features were all included in the final 

model.  Only two features reached significance using the Wald Chi-Square maximum likelihood 

estimates--GREEN_AV and BLUE_AV.  The blue and green planes distinguish the dirt trails 

from their surrounds better than the red plane, Figure 3.  

 

5.3 LESION DISCRIMINATION RESULTS  

Figure 11 shows the plot of the ROC curve and the area under the ROC curve, denoted 

as AUC, for the neural network results based on the above features using on-line neural network 

training and leave-one-out training and testing.  
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                                   (a) (b) 

  
(c) (d) 

Figure 10. Dirt trail detection mask examples. (a) Dirt trail images. (b) Dirt trail image overlays. 

(c) Benign images. (d) Benign image overlays.   
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Figure 11. ROC curve and AUC (area under curve) for backpropagation neural network. 

AUC=0.902. 
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6. CONCLUSIONS  

Results obtained from this study show that automatic detection of dirt trails in 

dermoscopic images of BCC is feasible.  This is important because of the large number of these 

skin cancers seen every year and the challenge of discovering these earlier with instrumentation.  

Filtering techniques developed in this study include the combined use of band-pass Gaussian 

filtering and median filtering.  In this manner, the primary filter is a spatial screen for the small 

objects and the secondary filter removes midrange frequencies.   Dot-size noise can easily 

mimic the objects seen in dirt trails.  Since dot-size objects are very common in benign lesions 

[8,9], the neural network classifier results of AUC =0.902 are higher than might be expected in 

this noisy environment.  The features in the individual objects therefore have meaningful 

information for detecting dirt trails, allowing discrimination of BCC from benign skin lesions.    

Future studies could incorporate assessments of cluster elongation and global 

distribution analysis using lesion deciles [10].  It is likely that parameters describing paracentral 

location of dirt trail objects will be useful in achieving better discrimination results.  In addition, 

further optimization of Gaussian bandpass filter parameters may improve classification results.   
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ABSTRACT 

Background: Telangiectasia, tiny skin vessels, are important dermoscopy structures used to 

discriminate basal cell carcinoma (BCC) from benign skin lesions. This research builds off of 

previously developed image analysis techniques identified vessels automatically to discriminate 

benign lesions from BCCs.  

Methods: A biologically-inspired reinforcement learning approach is investigated in an Adaptive 

Critic Design framework to apply Action Dependent Heuristic Dynamic Programming 

(ADHDP) for discrimination based on computed features using different skin lesion contrast 

variations to promote the discrimination process.  Lesion discrimination results for ADHDP are 

compared with multi-layer perception (MLP) backpropagation artificial neural networks. 

Results: This study uses a data set of 498 dermoscopy skin lesion images of 263 BCCs and 226 

competitive benign images as the input sets. This data set is extended from previous research 

[12]. Experimental results yielded a diagnostic accuracy as high as 84.6% using the ADHDP 

approach, providing an 8.03% improvement over a standard MLP method.   

Conclusions: We have chosen BCC detection rather than vessel detection as the endpoint.  

Although vessel detection is inherently easier, BCC detection has potential direct clinical 

application.  Small BCCs are detectable early by dermoscopy and potentially detectable by the 

automated methods described in this research.    

Key words: Image processing, telangiectasia, backpropagation, adaptive critic design, ADHDP 
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1. INTRODUCTION 

Telangiectasia are dilated blood vessels of varying diameter within the superficial 

dermis. These vessels are observed with a number of diseases such as rosacea and are a 

prominent feature of basal cell carcinoma (BCC), the most common skin cancer [1].  They are 

commonly present as a background skin feature in fair-skinned persons, especially in sun-

exposed areas in older persons.  Telangiectasia can best be visualized with dermoscopy, using 

either a glass plate with fluid interface (contact non-polarized dermoscopy) or cross-polarized 

lighting (non-contact polarized dermoscopy), together with 10-power magnification.  In BCC, 

the classical form of telangiectasia is termed “arborizing telangiectasia,” with a thick central 

trunk vessel with narrow radiating branch vessels [2, 3].  Figure 1 shows a BCC with arborizing 

telangiectasia and fine telangiectasia, in addition to background telangiectasia resulting from sun 

damage. The goal of the image analysis is to differentiate the types of telangiectasia shown in 

Figure 1 in order to discriminate BCC from non-malignant lesions.  

Numerous image processing approaches from various medical domains [4-11] have 

been reviewed.  These techniques from other (non-cutaneous) domains rely on monochromatic 

methods and are adapted for larger vessels, inappropriate for telangiectasia. Therefore a pixel-

based color drop algorithm was developed for optimal image processing in [12].   

Figure 2 presents the overall skin lesion discrimination process, including image 

processing and classification, that is explored in this research.  From Figure 2, the image 

analysis techniques investigated to detect and characterize telangectasias extend previous 

research [12].  An overview of image analysis algorithms employed is shown in Figure 3. Image 

processing techniques are used to produce vessel masks, which generate feature sets used as 

inputs to different classifiers to make the benign/malignant decision.  

The data set consisted of 263 basal cell carcinoma (BCC) dermoscopy images with 

visible telangiectasia obtained from two clinics:  Skin and Cancer Associates, Plantation, FL, 

and the Dermatology Center, Rolla, MO.  Two hundred twenty-six benign dermoscopy images 

were selected from benign lesions in the same study for image processing algorithm 

development, including:  55 dysplastic nevi (45 with mild atypia and 10 with moderate atypia), 

50 seborrheic keratoses, 63 benign acquired nevi, 17 lentigines, 13 actinic keratoses, 1 

hemangioma, 8 lichen-planus like keratoses, 4 dermatofibroma, 2 warts, and 13 single examples 

of various benign diagnoses were identified in the same dermoscopy study and used as the 

competitive test set. All images were taken with the HR II DermLite (3Gen, Dana Point, CA) 

using ultrasonic gel for the fluid interface.  Lesions were included in the study if by clinical or 
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dermoscopy evaluation they were malignant, potentially malignant, changing, or of interest to 

physician and/or patient.  Lesions that were biopsied for cosmetic reasons were not included in 

the study.  The data set was of moderate diagnostic difficulty and was felt to represent basal cell 

carcinomas and benign lesions encountered in the clinic.  The Phelps County Regional Medical 

Center Institutional Review Board, Rolla Missouri, approved this research and each subject or 

subject’s parent or guardian signed a consent form for this research.  All basal cell carcinomas in 

the study had histopathology examined by a dermatologist or a dermatopathologist. 

 

 

 

Figure 1. Telangiectasia example. Arborizing telangiectasia (trunk and branches) are the 

classical telangiectasia seen in a contact, non-polarized dermsocopy image of basal cell 

carcinoma (BCC). Fine telangiectasia are more numerous than arborizing telangiectasia in BCC. 

Note that sun damage telangiectasia are wider, shorter, have less sharp edges, have a greater 

variation in width, and are more sparse than BCC telangiectasia. 
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Figure 2. Overview of vessel detection and discrimination process. 

 

 

 

 

Figure 3. Overview of image analysis algorithm. 

 

 

From Figure 3, image processing techniques including a pixel-based color drop 

algorithm, noise filtering, segment connection and size filtering, previously described in detail 

[12].  The color drop algorithm exploits known specific sharp color gradients found 

predominantly at vessel edges.  It iterates through every pixel inside the lesion, labeling a new 

designated center pixel, then moves outward a set number of pixels from this given center in 8 

directions, and requires a minimum color drop, optimizing gradients for each color channel [12].  

Noise sources such as hair and bubbles are subsequently eliminated by specific morphologic and 

size filters [12].   Vessel segments are connected using a closing operation and size filtering 

limits noise.  Figure 4 presents an example of the image processing steps for the original image 

in Figure 1 used to generate the vessel mask for feature calculations.  

Contrast enhancement is needed as a pre-processing step to detect the low-contrast 

vessels. In this research, seven different contrast enhancement variations are applied to the 

image data set, generating seven data sets for vessel mask determination and feature and 

discrimination analysis.  These seven contrast enhancement masks provide multiple perspectives  
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of the skin lesions for feature extraction and data fusion analysis using reinforcement learning 

techniques for lesion discrimination.   

 

 

 

(a)                                                                      (b) 

 

                                     (c)                                                                       (d) 

Figure 4. Examples of telangiectasia in the skin image from Figure 1 and the vessel mask 

generated using the algorithm in Figure 3.  (a) Vessel mask after color drop algorithm. (b) 

Vessel mask after noise filtering. (c) Vessel mask after segmentation. (d) Vessel mask after size 

filter. 

 

 

 

Reinforcement learning (RL) is the problem faced by an agent that must learn behavior 

through trial-and-error interactions with a dynamic environment. It is a computational approach 

to learning whereby an agent tries to maximize the total amount of reward it receives when 

interacting with a complex, uncertain environment [13].  RL has been developed in various 
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applications such as neuro-computing [14], multi-resolution object recognition [15] and image 

artifacts detection [16]. 

The adaptive critic design (ACD) technique provides a workstation for implementing 

RL. ACD approximates the neuro-dynamic programming by using an action and a critic 

network, respectively [17]. An RL-based ACD network is applied to the seven features data sets. 

One ACD algorithm, direct neural dynamic programming (NDP), is implemented as the 

classifier. In direct NDP, two generic (neural) function approximators are used to represent both 

the value function (for control performance evaluation) and the action function (for control law 

generation – policy function). Furthermore, the state information is used directly in learning the 

control law where the controller parameters are the weight parameters in the action function 

implemented by a neural network. Direct NDP is a model independent approach to action 

dependent heuristic programming (ADHDP) [18].  This research introduces the application of 

ACD to skin lesion discrimination.  The application incorporates feature analysis of the different 

skin lesion contrast variations to promote the discrimination process.   

The remaining sections of this paper include: 1) Problem Description, 2) Adaptive Critic 

Design Methodology, 3) Benchmark Classification Technique, 4) Results and Discussion, and 

5) Conclusion and Future Work.  
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2. PROBLEM DESCRIPTION  

Figure 5 shows a lesion image with telangiectasia and its output with contrast 

enhancement by using a gain and an offset to stretch the dynamic range of the image [19].  For a 

scene with dynamic range between      and     , and a display medium with dynamic range 

    , the contrast enhancement (CE) is given for each pixel (x,y) as  

 

  (   )  
    

         
(  (   )      )                                                                                         (1)                

 

where,       is 255;      is the maximum gray value;      is the minimum gray value, varied 

over 6 different CE values:          ,         ,          ,         ,          , and         . 

Image processing with      greater than           generates too many false vessels after 

implementing image processing techniques.        

Based on varying     , seven total images of the lesion are generated, six CE images 

and the original lesion image.  The telangiectasia detection algorithm is applied to the different 

contrast enhanced images for each lesion.  The seven vessel mask overlays are called state 1 to 

state 7 (Figure 6).  As shown in Figure 6, more vessels can be detected with increasing the 

contrast.  However, with increased contrast, more false vessels are found as well.  An ACD-

based telangiectasia-discrimination classifier is then applied to those seven data sets. The input 

to this algorithm is the features generated from the vessel mask.  

The features utilized to provide numerical descriptors of the vessel-like objects in the 

vessel mask for each image are given in Table 1.  The physical motivation and the Chi-Square 

statistical analysis for selecting these features are presented in [12].   
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(a) (b) (c) 

   

(d) (e) (f) 

 

  

(g)   

                  Figure 5. Images with varied contrast enhancement (CE). (a) Original image 

(b)           =0.05 (c)           =0.10 (d)          =0.15 

(e)          =0.20  (f)          =0.25 (g)          =0.3 
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(a) (b) (c) 

   

(d) (e) (f) 

 

  

(g)   

Figure 6.Vessel mask overlays change with varying contrast enhancement.  

(a) State 1. (b) State 2. 

(c) State 3. (d) State 4. (e) State 5. (f) State 6. (g) State 7.       
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Table 1. Vessel-based features investigated with descriptions 

No. Measure (all 

normalized except 

those marked*) 

Description (measures marked # taken 

after skeletonizing) 

Meaning 

1-4 Object area after 

1,2,9,10 erosions  

Erode the vessel mask with circular 

structuring element of radius from 1 to 

10 and record the remaining mask area 

for each erosion and divide by square 

root of the lesion area 

BCC object areas 

smaller after given 

number erosions 

5-8 Object number 

after 1, 2, 6, 7 

erosions*  

Erode the final vessel mask with circular 

structuring element of radius from 1 to 

10 and record the remaining object 

number after each erosion 

BCC object fewer 

after given number 

erosions 

9 Maximum object 

length 

Maximum length for all vessels/square 

root lesion area# 

BCC vessels are 

longer 

10 Average object 

width 

Average width for all vessels/square root 

lesion area 

BCC vessels are 

narrower 

11 Standard deviation 

object width* 

Standard deviation for all vessel widths BCC vessel widths 

are more uniform 

12-

13 

Maximum/ 

Average 

eccentricity* 

Maximum/Average ratio of distance 

between the foci of the ellipse enclosing 

the vessels and its major axis length 

BCC vessels are 

straighter 
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3. ADAPTIVE CRITIC DESIGN METHODOLOGY  

This model employs reinforcement learning (RL) through direct neural dynamic 

programming. The term “direct” is influenced by the adaptive control literature where “direct 

adaptive control” means no plant model, and thus no plant parameter is estimated.  Instead, 

certain plant information is used directly to find appropriate and convergent control laws and 

control parameters.   

Figure 7 shows the model of ADHDP used in this study, which is based on the model in 

[18]. In the current problem setting, let the discounted total reward-to-go R(t) at time t be given 

by 

 

 ( )   (   )    (   )    ∑      

   
 (   )                                                          (2)                             

 

where the function of  ( )  is the reinforcement value at time t, and   is a discount factor 

between 0 and 1.  In the context of this research, t refers to a contrast enhanced image in the 

sequence of 7 increasing CE images for a given skin lesion (Figure 6).    

 

 

 

Figure 7. Schematic diagram of ADHDP. 

 

 

 

The critic network (Figure 7) is used to provide an output J(t), which is an 

approximation for R(t), the weighted total future reward-to-go. The reward function R(t) at time 
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t is given by Eq.(1).  We define the prediction error, and consequently the Bellman error, for the 

critic element as 

 

  ( )    ( )    (   )   ( )                                                                                               (3)      

 

and the objective function to be minimized in the critic network is 

  

  ( )  
 

 
  

 ( )                                                                                                                           (4)                        

 

The principle in adapting the action network is to backpropagate the error between the 

desired ultimate performance objective, denoted by R*, and the approximate function J from the 

critic network. Since    has been defined as the reinforcement signal for “success,” R* is set to 

  /(1-α) in the direct NDP design paradigm and in subsequent case studies.  In this paper,    is 

set to zero for simplification.  

In the action network, the state measurements are used as inputs to create a control as 

the output of the network. In turn, the action network can be implemented by either a linear or a 

nonlinear network, depending on the complexity of the problem. The weight update in the action 

network can be formulated as follows. 

 

  ( )   ( )                                                                                                                            (5)           

 

An artificial neural network is chosen for implementation of the action and critic 

networks. The structure of the neural networks for both the action and critic networks are 

implemented as a multi-layer feed forward (MLP) three layer neural network consisting of an 

input layer, a hidden layer and an output layer. The hidden layer neurons have a sigmoid transfer 

function while other layers have linear transfer functions. For the action network, the 

architecture is 14x5x1, with 13 features and a bias in the input layer, five nodes in the hidden 

layer and 1 output layer. For the critic network, the architecture is 15x5x1, with 13 features, a 

bias and the output from the action network in the input layer, five nodes in the hidden layer and 

1 output layer (Figure 8). 
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Figure 8. Neural network structure of the critic network. 

 

 

A ten-fold cross-validation methodology is used for training/test set generation for the 

neural network.  All neural networks are trained up to 1000 epochs, using online stochastic delta 

learning.  In this case, the next input pattern is selected randomly from the training set, to 

prevent any bias that may occur due to the sequences in which patterns occur in the training set.  

For each training feature, seven different data states (original image feature data set and its six 

contrast enhancement feature data sets) are applied as the input one by one for both action 

network and critic network to update the weights. If the difference between the action network 

output U(t) and the target is less than 0.5, the reinforcement signal r(t) takes the reward “0”, 

otherwise, r(t) takes the punishment “-1”.  The learning rates for both critic and action network 

are set to be 0.001. The discount factor    is set to be 0.1. The test set is the original image 

feature data set only. 

With the target value for the BCC data set  to 1 and the benign data set to 0, action 

network outputs after testing are between -1 and 1. Receiver operating characteristic (ROC) 

curves are generated for classification results based on the neural network output obtained for all 

ten test sets. The ROC curve is represented by plotting the fraction of true positives out of the 

BCC lesions (TPR = true positive rate) versus the fraction of false negatives from the benign 

lesions (FNR = false negative rate) [20].  

A multilayer perception backpropagation neural network is investigated for lesion 

discrimination [21].  Sigmoid transfer functions are used in the hidden layers, and a linear 

transfer function is used in the input and output layer, the neural network architecture is 14x5x1 

(all features as input).  Neural network training and ROC curve generation proceed as above.    

http://en.wikipedia.org/wiki/True_positive
http://en.wikipedia.org/wiki/False_positive
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4. RESULTS AND DISCUSSION  

4.1 DIAGNOSTIC ACCURACY  

In this research, ACD is applied for BCC classification. The output is compared with 

MLP backpropagation neural network, using the same 14x5x1 neural network architecture (13 

features and a bias for the input layer), training and test strategy, and ROC curve generation for 

all neural networks.   

In addition to comparing the discrimination results for all 10 test sets from the different 

classifiers using AUC (Figure 9), we used a common true positive rate from the ROC curves to 

determine a true negative rate.  Specifically, we defined the true negative rate to be the largest 

true negative value while the true positive rate is constant and at least 85%. With the overall true 

positive constant at 85.2%, the true negative rates for MLP backpropagation NN and Direct 

NDP are 64.2% and 80.6%, respectively. 

 

  

Figure 9. ROC curve and AUC (area under curve) for neural networks for all 10 text sets.  

(a)MLP back propagation NN. AUC=0.766. (b) Direct NDP. AUC=0.846.  
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Based on the AUC and the true positive and true negative comparisons, we found that 

adaptive critic design achieved the best results among the different classifiers investigated. 

Specifically, from Figure 9, direct NDP yielded higher AUC discrimination results (0.846), 

compared with the standard backpropagation NN (0.766).  The direct NDP results show an 

improvement of 8.03% for AUC and 16.5% in true negative rate (based on the constant true 

positive rate of 85.2%) over the benchmark standard backpropagation NN method and features 

investigated in [12].  In direct NDP, the critic network is used as the performance evaluation; the 

reward of reinforcement learning is helping to update its weight and the output J(t). Therefore, 

the action network could update its weight based on total seven state feature data instead of only 

one state feature for other techniques. The global feature data improves the accuracy 

discriminating BCC from benign lesions.   

 

4.2 STRUCTURE DETECTION VS. DIAGNOSIS  

We have chosen BCC detection rather than vessel detection as the endpoint.  Although 

vessel detection is inherently easier, BCC detection has potential direct clinical application.  

Small BCC are detectable early by dermoscopy, and potentially detectable by the automated 

methods described here.    
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5. CONCLUSIONS AND FUTURE WORK  

This paper introduces the ACD design to image recognition using ADHDP algorithm. 

ADHDP result gives results superior to those from existing methods. This technique may be 

generally applicable to structure detection that is sensitive to image parameters such as contrast, 

which was explored here.  The ACD technique provides a means to automatically tune the 

system for optimal results.   

Future work will involve exploring other adaptive critic design algorithms such as 

action dependent dual heuristic dynamic programming (ADDHP) or action dependent 

globalized dual heuristic dynamic programming (ADGHP) for solving these problems. 

Moreover, the PSO-based ADHDP, ADDHP and ADGHP can also be implemented as a 

comparison. Last, the convenience sample from our clinics provided results that need 

confirmation.  It is planned to pursue telangiectasia detection methods on a larger set of lesions.   
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ABSTRACT 

Images in biomedical articles are often referenced for clinical decision support, educational 

purposes, and medical research. Authors-marked annotations such as text labels and symbols 

overlaid on these images are used to highlight regions of interest which are then referenced in 

the caption text or figure citations in the articles. Detecting and recognizing such symbols is 

valuable for improving biomedical information retrieval. In this research, image processing and 

computational intelligence methods are integrated for object segmentation and discrimination 

and applied to the problem of detecting arrows on these images.  Evolving Artificial Neural 

Networks (EANNs) and Evolving Artificial Neural Network Ensembles (EANNEs) 

computational intelligence-based algorithms are developed to recognize overlays, specifically 

arrows, in medical images. For these discrimination techniques, EANNs use particle swarm 

optimization and genetic algorithm for artificial neural network (ANN) training, and  EANNEs 

utilize the number of ANNs generated in an ensemble and negative correlation learning for 

neural network training based on averaging and Linear Vector Quantization (LVQ) winner-take-

all approaches.  Experiments performed on medical images from the imageCLEFmed’08 data 

set, including 395 images with one or more arrows and 288 images with no arrows, yielded area 

under the receiver operating characteristic curve and precision/recall results as high as 0.988 and 

0.928/0.973, respectively, using the EANNEs method with the winner-take-all approach. 
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1. INTRODUCTION  

Authors of biomedical publications use images to illustrate medical concepts and 

highlight special cases.  These images often convey essential information and can be very 

valuable for improved clinical decision support (CDS) and education. Biomedical information 

retrieval has, so far, been largely text-based and limited mostly to bibliographic information. To 

be of greater value, it is desirable to retrieve images from biomedical publications. However, 

they need to be first annotated with respect to their usefulness for CDS to help determine 

relevance to a clinical query or to queries for special cases important in educational settings 

(Demner-Fushman, 2007, 2008, 2009). 

Image retrieval can be achieved using the following methods: (i) traditional text-based 

approaches that index figure captions, (ii) image retrieval approaches that index the visual 

content of the images, and (iii) an intelligent combination of the above. To enhance text-based 

retrieval, content-based image retrieval (CBIR) has been explored to retrieve information from 

images in the biomedical field (Demner-Fushman, 2007). However, the approaches have not 

taken advantage of specific image regions of interest (ROIs) highlighted by the author using 

overlaid symbols, such as arrows and other text labels, and identifying them in the caption text. 

Further, it has been shown that whole image retrieval without attention to specific regions of 

interest marked by annotations, such as arrows (Figure 1), is not as promising as retrieval of 

text, primarily due to “semantic gap” introduced by less relevant image regions (Deserno, 2009). 

It is commonly understood in the field that low level features such as color, texture, and shape 

used in CBIR are insufficient to represent medical concepts or meaningful diagnostic 

information in the images effectively unless they can be applied to the key image regions such 

as those identified by the author, as in the case of images from biomedical articles. To improve 

the relevance quality of conventional retrieval approaches, we have proposed an approach using 

hybrid (text and image) features (Antani, 2008; You, 2009, 2010). Information retrieval 

techniques are used to identify key textual features in the title, abstract, figure caption, and 

figure citation (“mention”) in the article. Structured vocabularies, such as the National Library 

of Medicine’s Unified Medical Language System (UMLS®) are used as well to identify the 

biomedical concepts in these (Demner-Fushman, 2009; You, 2009). Unlike conventional CBIR 

schemes that extract features from the entire image, our approach uses a combination of 

features: those computed from specific image region of interests (ROIs) in addition to the ones 

obtained from the entire image. The ROIs are detected by localizing and recognizing image 

annotations 
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such as arrows overlaid by authors. Annotations and ROIs in retrieved images can be identified 

by the annotation recognizer and then used to re-rank the results of the recognizer.  

There are some techniques that have been implemented to find arrows in previous 

research. Sparce pixel vectorization has been explored to detect arrowheads (Dov, 1999).  In 

addition, arrow sign identification has been investigated for robot navigation using a camera-

based method (Park, 2008). Compared  to the existing approaches, the arrow symbols seen in 

the medical images experimental data set used in this research have a more complex shape. As 

shown in Figure 1(a), arrows in these medical images do not necessarily have to be straight (see 

arrow 3, arrow 4 in Figure 1(a)) and the shape of the arrows can be significantly different (see 

arrow 2 in Figure 1(a)) as well. Furthermore, the example image in Figure 1(b) shows objects 

such as characters and symbols which can be of similar size to arrows, providing potential false 

arrow detections.  Therefore, a general and robust arrow detection algorithm is needed for 

discrimination from other medical image artifacts.  

 

 

  

                                      (a)                                                           (b) 

Figure 1. Medical image with arrows. (a) Arrow example (Adapted from (Caskey, 1999)).  

(b) Non-arrow example (Adapted from (Fraser, 1999)). 

 

 

This work extends previous research for a computational intelligence-based approach 

for medical image symbol (arrow) analysis (Cheng, 2010). In this research, a data set of 683 

medical images annotated by modality (radiological, photo, etc.), was selected from the 
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imageCLEFmed’08 (http://www.imageclef.org) data set, including 395 images with one or more 

arrows and 288 images with no arrows (Müller, 2010).  An overview of the arrow detection 

analysis process for medical images is shown in Figure 2. Since arrow, text and symbol objects 

are white or black, they can be segmented using image analysis techniques. After generating the 

binary image containing only text-like and symbol-like objects, feature sets are used as input to 

classifiers so that we can discriminate the arrows from noise and other types of medical symbols 

(Cheng, 2010). The various steps in the flowchart presented in Figure 2, are explained in Section 

2. Section 3 gives the experimental results, Section 4 provides the discussion, and Section 5 

presents conclusions and future work.  

 

 

 

Figure 2. Overview of arrow detection process. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Medical 

images 

Arrow-like 

object 

segmentation 

Arrow-like 

object feature 

extraction 

Arrow/Non-arrow object 

discrimination 



www.manaraa.com

57 

 

 

 

2. ARROW DETECTION PROCESS 

As previously stated, medical images can contain arrow, text, and symbol objects.  From 

these images, arrows typically are white or black objects as distinguished color from the 

background.  These arrow objects can be segmented based on grayscale thresholding and edge 

detection, which is the basis for the segmentation algorithm presented.  Thresholding and edge 

detection provide complementary information for finding arrow-like objects within the image 

with similar gray levels and potentially varying contrast with the surrounding background.  

Arrow-like object analysis and pruning are performed using extracted features with 

computational intelligence techniques.   In the following sections of the paper, the algorithmic 

details are given for the methods used in the different blocks of arrow detection process 

flowchart from Figure 2. 

  

2.1 OBJECT SEGMENTATION  

 From the medical images, the initial step is to segment arrow-like objects using a 

combination of thresholding and edge detection techniques.  The object segmentation algorithm 

consists of the following steps:  

1) Convert RGB images into luminance grayscale images.  

2) Use Otsu's method (Otsu, 1979) to generate a preliminary object mask for arrow-like 

objects.  

3) Remove objects that are considered small (pixel number of the object area is less than 60) 

from the preliminary mask in Step 2.   

4) Generate an edge image of arrow-like objects using a gray drop method, extending the 

algorithm developed in (Cheng, 2011). If the absolute gray value of the center pixel (C) 

minus the gray value of NW, N, NE, W, E, SW, S, SE (see Figure 3) is greater than the gray 

drop, determined experimentally as 30, this pixel will be marked in the edge image. Figure 3 

shows the edge detection operator mask.  

5) Compute the bounding boxes of the objects in the masks from Steps 3 and 4. 

6) Compare bounding box sizes for corresponding objects from the masks in Steps 3 and 4 and 

retain the objects with the same bounding box size.  Let RG denote the mask image 

determined from the grayscale image.  
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7) Repeat Steps 1-6 for inverted grayscale images since arrow, text and symbol objects may 

also be black.  Let RI denote the mask image determined from the inverted grayscale image. 

8) Compute the final arrow-object mask as the OR image of RG and RI, denoted as RG+I = RG + 

RI. 

Figure 4 presents an image example of the image processing steps for the original image 

to generate the binary mask for feature calculations.  Note that Figure 4 (i) and (k) are empty 

images because there are no arrow-like objects resulting from these steps in the image process 

steps to find arrows.   
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Figure 3. Edge detection operator mask.  

 

 

2.2. FEATURE EXTRACTION  

After completing the image processing steps for arrow-like object segmentation, 

features are extracted from each object. In (Park, 2008), features including extent and solidity 

were selected for arrow discrimination and line segment features were utilized to estimate the 

orientation of arrow objects (You, 2010).  For the (You, 2010) study, arrow orientation, not 

detection, was explored.  A typical arrow has a head region with varying stem types.  Variations 

of arrow heads and arrow stems can be observed in Figure 1 (a).  In order to address the 

complexity of the size and shape variations of the arrows in the medical images for the 

experimental data set, features in three categories are examined, including region property 

features, shape features and correlation-based features. To  this end, multiple features are 

computed for each object in the mask RG+I (see Step 8 in Section 2.1) to facilitate arrow/non-

arrow discrimination by using the object mask image computed as shown in section 2.1. The 

feature set descriptions are given as follows.   
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                         (a)                                 (b)                                   (c)                                       (d) 

 
 (e)                          (f)                               (g)                          (h) 

 
(i)                                 (j)                               (k)                               (l) 

 

Figure 4. Object segmentation example. (a) Original image (Adapted from (Li, 2003)). (b) 

Grayscale image. (c) Inverted grayscale image. (d) Gray threshold image for (b). (e) Inverted 

gray threshold image for (c). (f) Gray threshold image after noise removal. (g) Inverted gray 

threshold image after noise removal. (h) Gray edge image for (b). (i) Inverted gray edge image 

for (c).  (j) Gray image comparing (f) to (h) with the bounding box size. (k) Inverted gray image 

comparing (g) to (i) with the bounding box size. (l) Final OR-image of (j) and (k).  

 

 

2.2.1 Region Property Features. The first set of features is based on the region 

properties and is computed using the Matlab® function regionprops (Hanselman, 2004).  The 

regionprops features represent the visualization of the objects based on:    

 MajorAxisLength: length (in pixels) of the major axis of the ellipse that has the same 

normalized second central moments as the region. 

 MinorAxislength: length (in pixels) of the minor axis of the ellipse that has the same 

normalized second central moments as the region. 
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 Axis Ratio: ratio of MajorAxisLength to MinorAxislength. 

 Normalized area:  area of the region divided by the whole image. 

 Solidity: area of the region divided by the convex hull area. 

 EulerNumber: equal to the number of objects in the region minus the number of holes in 

those objects. 

 EquiDiam: the diameter of a circle with the same area as the region. 

 Extent: ratio of area to bounding box area. 

2.2.2 Shape Features. The second set of features computed for the arrow-like objects 

are shape features.  These features include: 

 AvgSkelDist: average width of object.  It can be expressed in the following equation: 

 

                  ∑   
 
    ⁄                                                                                                    (1)                                                 

     

                                                                                                                               

The skeleton of the arrow-like object was determined using the morphological skeleton 

algorithm (Serra, 1982). S is the total number of the pixels inside the skeleton object.    is the 

distance from pixel inside the skeleton object to the nearest pixel  in the boundary of the object. 

 MinPixelNo:  the minimum number of intersection areas for the object and the two lines as 

shown in Figure 5.  The function of these two lines are x=X and x=X+   (X is the left 

column of the bounding box;    is the width of bounding box), which is shown in Equation 

2.  The value of MinPixelNo for arrow (Figure 5(a)) is usually smaller than the value for 

noise (Figure 5(b)) due to the shape of the arrowhead. 

 

                     (       (          )        (             ))                                 (2) 

 

x=X x=X+BW x=X x=X+ BW  

                                                         (a)                                        (b) 

Figure 5. MinPixelNo feature. (a) Arrow.  (b) Noise. 
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2.2.3 Correlation-based Features. The third set of features is based on computing 

shape profiles of binary arrow-like objects and correlating those profiles with basic functions.  A 

one dimensional shape profile of each arrow-like object is found as follows.  The bounding box 

of the arrow-like object is determined.  Let    and    denote the bounding box height and 

width, respectively.  The profile at each sample,  ( ), is defined as Equation 3.  

 

 ( )  ∑      (   )
  
                                                                                                                     (3) 

 

for i = 1,…, BH. An example of the samples used for profile calculation is given in Figure 6. Let 

    ( )  ( )    (  )  be the sequence of profile values. Correlation-based features are 

extracted by correlating the shape profile of the arrow-like object with weighted density 

distribution (WDD) functions (Piper, 1989), shown in Figure 7. Let    denote the WDD 

function in Figure 7(a),    denote the WDD function in Figure 7(b), and so on.  In previous 

research, WDD functions have been explored in previous research for:  1) landmine 

discrimination based on 1-dimensional profiles of metal detector signals (Stanley, 2002) and 2) 

dermatology skin lesion discrimination based on a 1-dimensional histogram representation of 

skin lesions (Stanley, 2008).  In both previous research applications, WDD functions provided 

shape-related information in the determination of correlation-based, size-variant, spatially 

distributed features from 1-dimensional profiles for object discrimination. In this research, the 

WDD functions have been applied to 1-dimensional projections profiles of arrow-like objects to 

extract shape information such as symmetry of the objects for object discrimination.  These 

WDD functions account for the degree of change in the spatial distribution encapsulated in a 1-

dimensional profile as well as the symmetry of those values for arrow discrimination. The 

twelve correlation-based features are computed as follows. 

Six WDD features (       )  are computed using the profile L according to the 

following expression: 

 

   ∑  ( )  ( )
  
                                                                                                                       (4) 

                                                                                                                                                                                      

for            Six additional features (         ) are computed by correlating the six WDD 

functions with the sequence of absolute differences between samples value as follows: 
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   ∑   ( )   (   )   ( )
  
                                                                                                  (5) 

  for k = 1,…,6 and L(0) = 0.   

 

 

L(1)

L(5)

L(10)

L(BH-5)

L(BH)

L(15)

 

Figure 6. Samples for generating WDD features.  (   is the height of bounding box) 

 

 

    

(a)                        (b)                       (c)                       (d)                         (e)                       (f) 

Figure 7. The WDD functions used to compute arrow features (Adapted from (Stanley, 2008)). 

 

 

2.3  CLASSIFIER ALGORITHMS 

Using the features computed for each arrow-like object within the object masks for all 

images in the experimental data set, Evolving Artificial Neural Networks (EANNs) and 

Evolving Artificial Neural Network Ensembles (EANNEs) are examined for arrow/non-arrow 

discrimination. A brief overview for each algorithm is presented in this section, while the 

implementation details are presented in the Appendix.  
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EANNs refer to a class of artificial neural networks (ANNs) in which evolution is 

another fundamental form of adaptation, in addition to learning (Yao, 1993). Evolutionary 

algorithms (EAs) are used to perform various tasks, such as connection weight training, 

architecture design, learning rule adaptation, input feature selection, connection weight 

initialization and rule extraction from ANNs. In our implementation, the Particle Swarm 

Optimization (PSO) (Kennedy, 1995) method and the Genetic Algorithm (GA) (Holland, 1975) 

method are explored for connection weight training. Both the PSO and GA use the same scheme 

for candidates’ representation, where each candidate is a D-dimensional vector with each 

element of the vector representing a connection weight and D being the total number of weights. 

The population is initialized in the sense that each element in a vector is randomly setting a 

value from -0.1 to +0.1. The fitness values for PSO and GA are set to be the root mean square 

error (RMSE) given the connection weights. The RMSE is calculated based on the difference 

between the grand truth and the actual ANN’s output. The algorithms for training the connection 

weights for ANNs in PSO and GA are explained in detail in the Appendix section. 

Evolving Artificial Neural network ensembles (EANNEs) provide a method for utilizing 

and combining the outputs of several networks (Yao, 2008).  Each ANN has the same inputs and 

generates its own outputs for decision making.  The ensemble method is based on the premise 

that a population contains at least as much information as any single individual. There are two 

components for ensemble design:  1) a method of training the networks to encourage the 

diversity of behaviors and 2) a mechanism to decide the final output based on the outputs from 

the individual networks. For the first component, a cooperative ensemble learning system 

(CELS) is used for training individual networks. CELS is used to create negatively correlated 

ANNs using a correlation penalty term in the error function of each individual network so that 

the mutual information among the networks in the ensemble can be minimized based on the Liu 

and Yao approach (Liu, 1999).  For the second components, since the outputs of the ANNs are 

floating-point numbers, averaging and winner-taking-all for combining/aggregating the outputs 

were examined.  The algorithms for each component are shown in the Appendix.  

 

 

 

 

 

 



www.manaraa.com

64 

 

 

3. EXPERIMENTS PERFORMED 

The experimental data set consisted of 683 medical image annotated by modality 

(radiological, photo, etc.) selected from the imageCLEF08 data set (Müller, 2010), including 

395 images with one or more arrows and 288 images with no arrows. These images were 

manually assigned as arrow/no-arrow images for creating the ground-truth database. The object 

segmentation for arrow-like object segmentation, feature extraction from those objects, and 

arrow/no arrow discrimination algorithms presented in Section 2 were applied to the image set. 

Using the object segmentation algorithm from Section 2.1, 724 arrow objects and 1450 

text/noise objects were segmented from those images. The 22 input features computed from 

each arrow-like object include 8 region property features, 2 shape features, and 12 correlation-

based shape profile features. Standard backpropagation ANNs, EANNs, and EANNEs 

algorithms with variations were investigated for arrow/non-arrow discrimination.  In order for 

an object to be scored correctly as an arrow object, the object had to be labeled by the 

discrimination algorithm as an arrow object, the object had to be completely segmented, and the 

object had to be ground truthed as an arrow object. 

Seven different feature combinations are investigated as inputs to the multilayer 

perceptrons(MLP) neural network architectures, with the neural network architectures 

summarized in the following cases:  1) 9x5x1 consisting of an input layer of 8 region property 

features and a bias with linear neurons, a hidden layer of 5 neurons with sigmoid transfer 

functions, and an output layer of one output with a linear neuron; 2) 3x5x1 consisting of an 

input layer of 2 shape features and a bias with linear neurons; 3) 13x5x1 consisting of an input 

layer of 12 correlation-based features and a bias with linear neurons; 4) 11x5x1 consisting an 

input layer of combined 8 region property features with 2 shape features and a bias with linear 

neurons;  5)  21x5x1 consisting of an input layer of combined 8 region property features with 12 

correlation-based features and a bias with linear neurons; 6)  15x5x1 consisting of an input layer 

of combined 2 region property features with 12 shape features and a bias with linear neurons; 7) 

23x5x1 consisting of an input layer of combining all three feature groups and a bias with linear 

neurons.  These architectures are summarized in Table 1. A ten-fold cross validation 

methodology is used for generating training/test sets for each neural network’s architecture 

(Kohavi, 1995).  The same training/test sets from the cross-validation process are applied to all 

feature combinations and classification algorithms presented.  Classification results are based on 

averaging the area under Receiver Operating Characteristic (ROC) curves (Fogarty, 2005) 

generated for each of the ten test sets.   The area under the ROC curve was given as the 
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evaluation measure because it does not require selecting a decision boundary or threshold to 

determine detection accuracy. In addition, experimental results are reported using precision and 

recall (Bar-Ilan, 1998).  Here, precision is defined as the number of arrow objects correctly 

called arrow objects (true positive classifications) divided by the total number of objects called 

arrow objects, and recall is defined as the true positive classifications divided by the sum of the 

true positive classifications and the number of objects which were not classified as arrow objects 

but should have been, i.e. the total number of arrows in the evaluation set of images.  

 

  Table 1. Seven cases with their feature combinations and NN architectures. 

Case No. Feature Combination NN Architecture 

1 Region property features 9x5x1 

2 Shape features 3x5x1 

3 Correlation-based  features 13x5x1 

4 Region property& Shape features 11x5x1 

5 Region property & Correlation-based features 21x5x1 

6 Shape & Correlation-based features 15x5x1 

7 Region property& Shape & Correlation-based features 23x5x1 

 

 

Figure 8 presents the ROC curve results for a representative test set for case 1 for the 

different classifiers with M=5 and N=75 (except for the backpropagation ANN algorithm).  

Table 2 shows the area under ROC curve results and precision and recall (given in parentheses) 

for the seven different input features combinations (Case 1 to Case 7) for the EANN, EANNE, 

and standard backpropagation ANN classifiers investigated.  For the EANN and EANNE 

classifiers, Table 2 includes the results for different population size (M) and the maximum 

number of generations (N), and  the standard online backpropagation ANNs were trained over 

2000 epochs.  Area under the ROC curve and precision and recall are  presented based on 

averaging the results over the ten test sets from the ten-fold cross validation process.  Precision 

and recall are presented based on specifying precision as a constant of at least 90% (based on the 

ROC curve) and computing the corresponding recall.     
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Figure 8. ROC curves for a representative test set for case 1 for the different classifiers with 

M=5, N=75 (except for Backpropagation ANN). (a) EANN GA algorithm. (b) EANN PSO 

algorithm. (c) EANNE  Average algorithm. (d) EANNE LVQ algorithm. (e) Backpropagation 

ANN.   
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Table 2.  Average area under the ROC curve test results and (precision/recall) for different 

algorithms and feature combinations.  For the EANN and EANNE algorithms M refers to the 

population size, and N is the maximum number of generations. 

 

Case 1 M=5,N=75 M=10,N=75 M=10,N=100 M=15,N=100 

EANN GA 0.862 

(0.900/ 0.652) 

0.867 

(0.900/ 0.667) 

0.865 

(0.900/ 0.666) 

0.884 

(0.904/0.635) 

PSO 0.927 

(  0.900/0.835) 

0.964 

(0.900/ 0.922) 

0.960 

(0.905/ 0.942) 

0.965 

(0.906/0.941) 

EANNE Average 0.930 

(0.900/0.783) 

0.958 

(0.900/0.865) 

0.975 

(0.906/0.972) 

0.979 

(0.900/0.970) 

LVQ 0.944 

(0.901/ 0.838) 

0.965 

(0.903/0.890) 

0.977 

(0.906/0.972) 

0.980 

(0.906/0.973) 

Backpropagation ANN 0.914 (0.900/0.795) 

Case 2  

EANN GA 0.892 

(0.900/0.550) 

0.901 

(0.900/0.540) 

0.904 

(0.900 0.686) 

0.904 

(0.900/0.686) 

PSO 0.876 

(0.900/0.526) 

0.917 

(0.905/ 0.637) 

0.924 

(0.909/0.609) 

0.914  

(0.900/0.625) 

EANNE Average 0.884 

(0.904/0.635) 

0.884 

(0.904/0.635) 

0.893 

(0.900/0.550) 

0.902 

(0.903/0.550) 

LVQ 0.884 

(0.907/0.620) 

0.883 

(0.903/0.620) 

0.896 

(0.900/0.551) 

0.905 

(0.900/0.554) 

Backpropagation ANN 0.905 (0.944/0.640) 

Case 3  

EANN GA 0.792 

(0.900/0.503) 

0.855 

(0.900/0.652) 

0.830 

(0.913/0.533) 

0.821 

(0.900/0.553) 

PSO 0.892 

(0.900/0.782) 

0.921 

(0.901/0.820) 

0.944 

(0.900/0.864) 

0.947 

(0.905/0.850) 

EANNE Average 0.924 

(0.902/0.861) 

0.935 

(0.900/0.860) 

0.947 

(0.900/0.855) 

0.950 

(0.900/0.861) 

LVQ 0.923 

(0.902/0.861) 

0.940 

(0.900/0.861) 

0.952 

(0.900/0.863) 

0.958 

(0.900/0.865) 

Backpropagation ANN 0.895 (0.944/0.681) 

Case 4  

EANN GA 0.837 

(0.913/0.540) 

0.844 

(0.923/0.553) 

 0.884 

(0.904/0.635) 

0.912 

(0.900/0.624) 

PSO 0.954 

(0.901/0.838) 

0.961 

(0.902/0.838) 

0.974 

(0.906/0.956) 

0.978 

(0.906/0.958) 
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Table 2.  Average area under the ROC curve test results and (precision/recall) for different 

algorithms and feature combinations.  For the EANN and EANNE algorithms M refers to the 

population size, and N is the maximum number of generations (con’t). 

 

EANNE Average 0.967 

(0.900/0.950) 

0.974 

(0.900/0.960) 

0.977 

(0.906/0.958) 

0.977 

(0.906/0.958) 

LVQ 0.970 

(0.900/0.958) 

0.978 

(0.906/0.958) 

0.982 

(0.903/0.892) 

0.988 

(0.928/0.973) 

Backpropagation ANN 0.922 (0.917/0.830) 

Case 5  

EANN GA 0.843 

(0.923/0.553) 

0.832 

(0.932/0.516) 

0.827 

(0.932/0.514) 

0.859 

(0.900/0.655) 

PSO 0.942 

(0.905/0.958) 

0.974 

(0.906/0.962) 

0.963 

(0.906/0.954) 

0.985 

(0.913/0.970) 

EANNE Average 0.956 

(0.900/0.863) 

0.976 

(0.906/0.958) 

0.984 

(0.913/0.965) 

0.980 

(0.903/0.960) 

LVQ 0.956 

(0.900/0.863) 

0.977 

(0.906/0.958) 

0.985 

(0.913/0.970) 

0.986 

(0.913/0.970) 

Backpropagation ANN 0.909 (0.917/0.731) 

Case 6  

EANN GA 0.828 

(0.932/0.514) 

0.831 

(0.913/0.533) 

0.896 

(0.900/0.550) 

0.873 

(0.912/0.666) 

PSO 0.861 

(0.900/ 0.667) 

0.948 

(0.906/0.958) 

0.951 

(0.905/0.940) 

0.956 

(0.900/0.963) 

EANNE Average 0.965 

(0.906/0.954) 

0.974 

(0.906/0.958) 

0.956 

(0.900/0.863) 

0.956 

(0.900/0.963) 

LVQ 0.968 

(0.906/0.955) 

0.975 

(0.906/0.958) 

0.962 

(0.906/0.954) 

0.957 

(0.900/0.963) 

Backpropagation ANN 0.925 (0.917/ 0.865) 

Case 7  

EANN GA 0.858 

(0.900/0.667) 

0.867 

(0.906/0.667) 

0.872 

(0.912/0.667) 

0.895 

(0.900/0.550) 

PSO 0.924 

(0.900/0.865) 

0.961 

(0.905/0.960) 

0.976 

(0.906/0.959) 

0.985 

(0.913/0.970) 

EANNE Average 0.978 

(0.906/0.958) 

0.975 

(0.906/0.958) 

0.974 

(0.906/0.944) 

0.976 

(0.906/0.959) 

LVQ 0.975 

(0.906/0.958) 

0.979 

(0.906/0.958) 

0.983 

(0.903/0.630) 

0.983 

(0.903/0.960) 

Backpropagation ANN 0.958 (0.917/0.856 ) 
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4. DISCUSSION 

Inspecting Figure 8 and Table 2, several observations can be made.  First, because the 

arrows in the experimental data set are uniform in grayscale, there were no cases of partially 

segmented arrow objects.  Second, according to Figure 8, the classifier accuracy ranking from 

highest to lowest based on area under the ROC curve is EANNE LVQ algorithm, EANNE 

Average algorithm, EANN PSO algorithm, EANN GA algorithm, and backpropagation ANN. 

Third, the area under the ROC curve and precision/recall results are not directly related.  The 

area under the ROC curve provides a measure of overall arrow discrimination capability over 

different classifier output thresholds.  Precision and recall gives a measure of relevance to the 

objects labeled as arrows.  Having a high area under the ROC curve does not always result in 

high precision/recall, as can be observed in Table 2.  Having a high area under the ROC curve 

and high precision/recall demonstrates arrow objects can be successfully discriminated from 

non-arrow objects and that arrow objects are correctly found and not omitted in the 

selection/segmentation process within the medical images. The highest overall discrimination 

rates based on area under the ROC curve and precision/recall are 0.988 and 0.928/0.973, 

respectively, for the region property and shape features (case 4) using the EANNE with LVQ 

(winner-take-all) approach. Other feature combinations including all features (case 7) and the 

region property and correlation-based features (case 5) yielded similar results using the EANNE 

with LVQ approach. Fourth, the PSO algorithm consistently gives higher results, area under the 

ROC curve and precision/recall, than the GA approach for the EANN algorithm for the different 

feature combinations.  Fifth, the EANN with PSO for weight updating and the EANNE methods 

consistently outperformed the standard backpropagation neural network benchmark approach 

for all feature combinations, highlighting the benefit of incorporating multiple neural networks 

in the training process.  This is supported with the general observation that the area under ROC 

curve and precision/recall results are higher with more neural networks integrated into the 

training process, M = 10, 15 versus M = 5 for the EANN and EANNE classifiers.  Sixth, for the 

EANNE approach, the LVQ winner-take-all method for integrating multiple neural networks 

gave consistently higher classification results than the averaging method for N=100 (last 2 

columns of Table 2) for all feature combinations.   Overall, the EANNE discrimination 

algorithms slightly outperform the EANN methods for the same input feature combinations.  

This experimental result highlights the robustness of the EANNE algorithms to the variations in 

the types of features explored for arrow discrimination as well as the size and shape variations 

of the arrows present in the experimental data set (Cheng, 2010).  
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The experimental results show that arrow discrimination can be performed at a high 

success rate using the arrow segmentation, feature extraction, and computational intelligence 

methods presented in this paper.  The arrow-like object segmentation algorithm found all arrows 

with numerous false positive arrow-like objects, hence, the need for feature and discrimination 

analysis.  The approach presented demonstrates the utility of integrating imaging and 

computational intelligence methods for object segmentation.  The objects circled by the red in 

Figure 9 and Figure 10 provide some examples with incorrect classification.  Since arrows are 

typically narrow and long, small arrows with large width may be incorrectly classified as noise, 

as shown in Figure 9.  In addition, narrow and long noise objects may be mistaken for arrow 

objects, as shown in Figure 10.     

 

 

 

                                     (a)                                                                      (b)                     

Figure 9.  Arrow objects incorrect classified (Adapted from (Saeed, 2004)). (a) Original image. 

(b) Binary object mask image. 
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(a)                                                                     (b)                     

Figure 10. Non-arrow objects incorrect classified (Adapted from (Schürmann, 2004)). (a) 

Original image. (b) Binary object mask image. 
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5. CONCLUSIONS AND FUTURE WORK 

This paper presents a process for integrating image and feature analysis and 

computational intelligence-based techniques for arrow discrimination in annotated medical 

images.  The arrow discrimination results show the potential for merging imaging and 

computational intelligence methods for accurate arrow discrimination and segmentation based 

on object pruning, i.e. labeling objects of interest.  Experimental results yielded area under the 

ROC curve and precision/recall as high as 0.988 and 0.928/0.973, respectively, using the 

EANNE approach with winner-take-all LVQ approach. Future work will involve integrating the 

detection of medical annotations into an overall approach for fusing data such as key words, 

modality of medical image and figure captions to improve the relevance of the search results for 

medical publication querying.  Future work will involve determining and incorporating arrow 

orientation information to assist in the assessment process of this symbol in medical images. 
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APPENDIX 

A.1 EVOLVING ARTIFICIAL NEURAL NETWORKS  

A.1.1 Evolving Artificial Neural Networks trained by Particle Swarm 

Optimization. Particle Swarm Optimization (PSO) (Kennedy, 1995) is the study of swarms of 

social organisms such as flock of birds, which each particle in the swarm moves toward its 

previous best location (Pbest) and global best location (Gbest) defined below at each time step. 

To train the connection weights in the ANNs, each candidate is a particle. Pbest is the particle of 

the M particles that gives the least RMSE between the current epoch of ANN’s training and the 

previous epoch with ANN’s training. Gbest is the particle among the M particles which 

generates the minimum RMSE. The velocity to update the particle is presented in Equation 6. 

The position vector of the particles is changed as shown in Equation 7. The same process is used 

for obtaining the next set of particles, which is repeated by N epochs. 

The velocity of the particles is given as follows: 

 

    (   )       ( )         (           ( ))        (           ( ))(6) 

 

The position vector of the particles is changed as follows: 

 

    (   )      ( )      (   )                                                                                      (7) 

                                                                                              

where n is the current iteration (time step) (       ), m is the current particle (1 m   M), d 

is the weight element (1 d                  ),    ( ) is the particle’s current velocity, 

   (   ) is the particle’s new velocity,    ( ) is the particle’s current position,    (   ) 

is the particle’s new position,       and        are the random values selected from 0 to 1, w 

is the inertia weight chosen as 0.7,    is the cognitive acceleration constant of 1.5, and    is the 

social acceleration constant of 1.5.  

A.1.2 Evolving Artificial Neural Networks trained by Genetic Algorithm. Genetic 

Algorithm (GA) (Holland, 1975) provides optimization by using selection, crossover, mutation 

and elitism operators. The implementation used in this research consists of generating M 

offspring, i.e. particles from a pool of M sets of initial weights comprising a parent pool. 

 

The offspring are generated as follows:  1) randomly select two parents (sets of weights) 
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from the parent pool of M sets of initial weights; 2) initialize offspring weights as the first parent 

weights and apply a randomly generated binary mask with the size of the weights matrix for the 

crossover process in order to recombine selected parents to get offspring. For this randomly 

generated binary mask, if a random value is selected which is less than 0.5, then the bit of binary 

mask is 0, otherwise, it is 1; 3) apply a mutation process for weight updating. The mutation 

process consists of selecting a weight and then adding a random value to it.  A weight is chosen 

if a random value is less than 0.5, then another random value between -1 to +1 is added to the 

weight value.  

MLP training is performed using the parent pool of weights and the offspring pool of 

weights based on the ANN architecture above.  The next parent pool is chosen based on whether 

the parent is used for initialization or its offspring minimizes the RMSE error.  The same 

process is used for obtaining the next set of offspring, which is repeated by N epochs. From the 

final parent pool, the parent which minimizes the RMSE error over the training feature vectors 

is selected for the final ANN weights for the test vectors.  

 

A.2 EVOLVING ARTIFICIAL NEURAL NETWORK ENSEMBLES  

A.2.1 Training the Networks. A learning paradigm named negative correlation 

learning (NCL) is used for training neural network ensembles. The idea of negative correlation 

learning is to introduce a correlation penalty term into the error function of each individual 

network so that the mutual information among the networks in the ensemble can be minimized 

(Liu, 1999).   

The steps of genetic algorithm neural network ensembles for training are given as 

follows.  First, generate an initial population of M ANNs, and set the iteration number n to be 1, 

the random initial weights are distributed uniformly inside a small range. Second, train each 

ANN in the initial population on the training set for a certain number of epochs using negative 

correlation learning. Third, calculate the fitness of M ANNs in the population.  Fourth, create M 

offspring ANNs by using selection, crossover, and mutation.  Fifth, replace the worst M ANNs 

in the current population with M offspring ANNs, and train the whole population using negative 

correlation learning for another epoch.  Sixth, stop the evolution process if the maximum 

number of iterations (N) has been reached. Otherwise,       and go to step 2.  
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A.2.2 Final output decision. Once a population of networks has been trained, a 

mechanism is needed to decide the final output based on the outputs from individual networks. 

Different methods are considered such as averaging, majority voting, and winner-taking-all. 

Since the outputs of the ANNs are floating-point numbers, we explored averaging and winner-

taking-all for combining/aggregating the outputs. For averaging, the output (    ) is simply 

expressed as follows: 

 

 
   

 
 

 
 ∑   

 
                                                                                                               (8) 

                                                                                                                                             

where, M is the number of the individual ANNs in the ensemble.      

For winner-taking-all approach, the output of the network with the strongest activation 

is chosen. A learning vector quantization network (LVQ) is trained after training the neural 

network ensembles (Kohonen, 1995). There are two layers in LVQ-competitive layer and output 

layer. The net output of the first layer of the LVQ is given by W, expressed as:  

 

                                                                                                                            (9)                                                                     

                                                      

where   is the same input vector as the input to the ensemble of ANNs, m=1,2,…,M and     is 

the weight of the mth neuron in the first layer.   

The network output of the second layer of the LVQ is given by: 

 

                                                                                                                                         (10) 

 

where    is the weight in the second layer. The second layer of the LVQ network is used to 

combine subclasses into a single class. The columns of    represent the subclasses (M) and the 

rows of the matrix represent the classes (C).    has a single 1 in each column, with others 

elements set to zero. The value 1 in each row indicates which class (the row number) the 

appropriate subclass (the column number) should be combined into. We set C equal to M.    

The training target (T) is given as: 

 

  {
      (  )           

      (  )           
                                                                                                 (11)                             
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We adjust the synaptic weight vectors of all neurons by using the update formula on the 

nth training epoch: 

 

   (   )     ( )   ( )(     ( ))                                                                          (12) 

                                                                                         

where,  ( ) is the learning rate which is set to be 0.2 if L2 is the same as the T, otherwise, it is -

0.2.      

Therefore, we have a trained LVQ network with the same input as EANNs and the 

winner neural network number as the output (1, 2,…, or M) indicated by   .  
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ABSTRACT 

Telangiectasia, dilated vessels of varying diameter near the surface of the skin of varying 

diameter, are critical dermoscopy structures used in the detection of basal cell carcinoma.  

Distinguishing these vessels from other telangiectasia, that are commonly found in sun-damaged 

skin, is challenging.  In this research, image analysis techniques are developed to identify 

vessels found in basal cell carcinoma automatically.  The primary screen for vessels uses an 

optimized local color drop technique.  A noise filter is developed to eliminate false positive 

structures, primarily bubbles, hair, and blotch and ulcer edges.  From the telangiectasia mask 

containing candidate vessel-like structures, shape, size and normalized count features are 

computed to facilitate the discrimination of benign skin lesions from basal cell carcinomas with 

telangiectasia using a neural network classifier. 
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1. INTRODUCTION 

Telangiectasias (telangiectases) are dilated blood vessels of varying diameter within the 

superficial dermis. They are common in fair-skinned persons, especially in sun-exposed areas in 

older persons. These vessels are also observed with a number of diseases, including rosacea, 

congenital lesions such as port-wine stains, scleroderma, inherited disorders such as ataxia-

telangiectasia and hereditary hemorrhagic telangiectasia, and with prolonged use of oral or 

topical corticosteroids [1]. Basal cell carcinoma (BCC), the most common skin cancer, 

frequently displays telangiectasia. Although often visible without magnification, these blood 

vessels can best be visualized with dermoscopy, using either a glass plate with fluid interface 

(contact non-polarized dermoscopy) or cross-polarized lighting, together with 10-power 

magnification.  In BCC, the classical form of telangiectasia is termed “arborizing 

telangiectasia,” with a thick central trunk vessel with narrow radiating branch vessels.  [2, 3]  

Figure 1 presents an example of a dermoscopy skin lesion image with arborizing telangiectasia 

and fine telangiectasia.  Figure 1 also shows sun-damaged skin that has telangiectasia, found in 

many non-malignant lesions, often seen in sun-damaged skin. The challenge here is to 

differentiate the wider, shorter, often less distinct telangiectasia seen commonly from the longer, 

finer vessels of BCC in order to discriminate BCC from non-malignant lesions.  

There have been numerous imaging-based approaches for vessel segmentation in a 

variety of medical domains.  Approaches investigated for vessel extraction and analysis include:  

1)  mathematical morphology and grayscale histogram thresholding of edge pixels for semi-

automatic extraction of vessels in vascular network images [4], 2)  a Rule-Based Expert System 

for segmentation of coronary vessels from digital angiograms which uses edge and region 

information along with domain specific knowledge for segmenting, grouping and performing 

shape analysis [5], 3)  morphological and modified Otsu threshold techniques for initialization a 

level set method with for tracking interfaces and shapes in the segmentation process for 

automatic segmentation of liver blood vessels using [6], 4)  image analysis, self-organizing map-

based registration and neural network classification techniques for vessel shape analysis to 

detect glaucomatous change [7], 5)B-spline methods for semi-automated segmentation and 

modeling of lumen and vessel surfaces in three-dimensional intravascular ultrasound [8], 6) 

shape decomposition for segmenting blood vessels in ultrasound color Doppler images based on 

shape decomposition [9], 7) ridge- and feature-basedvessel segmentation in two-dimensional 

color images of the retina [10], 8) texture-based segmentation of blood vessels in retinal images 

using unsupervised clustering techniques which addresses local contrast variations for detecting 
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minor vessels [11], among others.    

In this research, we explore a vessel detection algorithm for extracting and 

characterizing telangiectasias in dermoscopy skin lesion images for discriminating basal cell 

carcinoma from benign skin lesions.  The proposed technique incorporates a color drop-based 

method for finding vessel-type objects with morphological and other image analysis methods to 

eliminate vessel-type mimics in common lesion features.   

The remaining sections of this paper include: overview, description of data sets used, 

pre-processing, first pass vessel detection by local drops, image noise filtering technique, post-

processing, vessel features used for skin lesion discrimination, and neural network methods for 

BCC diagnosis, experiments performed, results, discussion, and conclusions. 

 

 

 

Figure 1. Telangiectasia. Arborizing telangiectasia (trunk and branches) are the classical 

telangiectasia seen in a contact, non-polarized dermsocopy image of basal cell carcinoma 

(BCC).  Fine telangiectasia are more numerous than arborizing telangiectasia in BCC. Note that 

sun damage telangiectasia are often rudimentary and tend to be wider, shorter, have less sharp 

edges, have a greater variation in width, and are less numerous per area than BCC telangiectasia. 
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2. METHODS  

2.1 TELANGIECTASIA DETECTION OVERVIEW  

An overview of methods used is shown in Figure 2.  Following pre-processing of 

images, color drops are used for vessel localization and characterization.  Noise filtering, 

segment connection and size filtering are used to produce vessel masks.  Various features sets 

are used as input to the neural network to generate ROC curves.  

 

 

 

Figure 2. Overview--BCC diagnosis by telangiectasia detection. 

 

 

2.2 DATA SET USED 

Fifty-nine basal cell carcinoma dermoscopy images with visible telangiectasia were 

selected at random from 297 basal cell carcinomas encountered in 2 clinics:  Skin and Cancer 

Associates, Plantation, FL, and the Dermatology Center, Rolla, MO.  116 benign dermoscopy 

images were selected from benign lesions in the same study: 31 dysplastic nevi (23 with mild 

atypia and 8 with moderate atypia), 21 seborrheic keratoses, 13 congenital nevi, 8 nevocellular 

nevi, 8 intradermal nevi, 7 lentigines, 6 compound nevi, 3 junctional nevi, 2 acral nevi, 2 actinic 
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keratoses, 2 hemangiomas, 2 lichen-planus like keratoses, 2 warts, and 9 single examples of 

various benign diagnoses were identified in the same dermoscopy study and used as the 

competitive test set.  For the test set, 152 benign dermoscopy images were used from the same 

study: 34 seborrheic keratoses, 32 dysplastic nevi (28 with mild atypia and 4 with moderate 

atypia), 19 congenital nevi, 13 lentigines, 11 nevocellular nevi, 8 actinic keratoses, 5 compound 

nevi, 4 blue nevi, 4 lichen-planus like keratoses, 3 intradermal nevi, 2 Grover’s disease, 2 

histiocytomas, 2 lichen simplex chronicus, 2 junctional nevi, and 11 single examples of various 

benign diagnoses.  (NIH SBIR R44 CA-101639-02A2). All images were taken with the HR II 

DermLite (3Gen, Dana Point, CA) using ultrasonic gel for the fluid interface.  Lesions were 

included in the study if by clinical or dermoscopy evaluation they were malignant, potentially 

malignant, changing, or of interest to physician and/or patient.  Lesions that were biopsied for 

cosmetic reasons were not included in the study.  The data set was of moderate diagnostic 

difficulty and was felt to represent basal cell carcinomas and benign lesions encountered in the 

clinic.  The Phelps County Regional Medical Center Institutional Review Board, Rolla Missouri, 

approved this research and each subject or subject’s parent or guardian signed a consent form 

for this research.  All basal cell carcinomas in the study had histopathology examined by a 

dermatologist or a dermatopathologist.   

 

2.3 PRE-PROCESSING  

The images obtained are not all of equal contrast. The dark vessels cannot be found in 

low-contrast images. All images failing a minimum contrast threshold, measured by standard 

deviation, underwent a uniform contrast enhancement and brightness decrease.  Borders are then 

found manually (dc) and corrected by a dermatologist (wvs), by selecting border points, creating 

a closed curve with a send-order spline, and a subsequent binary lesion border mask [12].   

 

2.4 COLOR-DROP VESSEL DETECTION   

To a human, a vessel looks red compared to the surrounding skin. Using machine 

vision, it is seen that pixels inside the vessel have green and blue color drops from the 

surrounding pixels while the red pixels are at most, only slightly brighter.  

The algorithm is based upon the premise that the vessels are narrow. Iterating through 

every pixel inside the lesion, labeling a new designated center pixel as c (Figure 3), it then 

moves outward a set number of pixels (NumPix) from a given center in eight directions, and 

demands a minimum drop, different for each color-- red, green and blue, respectively optimized 

at -2, 4, and 12. A candidate pixel is marked if for any satisfied direction pair, the drop 
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requirements are satisfied in at least two directions. As determined experimentally, 135 degrees 

is large enough to compare the surrounding pixel with the center pixel; 45 degrees and 90 

degrees yield too much noise, while 180 degrees may miss some actual vessel pixels. The goal 

at this stage is to find all possible vessel pixels, regardless of noise found. 
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Figure 3. Direction Mask Used for Pixel Marking. 

 

 

Figure 4 presents an example of the output images based on different red color drops 

with 2 in (b) and -2 in (c). With decreasing the red drop from 2 to -2, some vessels missed in (b) 

can be detected.   

 

        

                        (a)                                               (b)                                              (c) 

Figure 4. Mask image with different red drops. (a) Original image. (b) Mask image with red 

drop of 2.  (c) Mask image with red drop of -2. 
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Vessels have different widths. Wider vessels are missed, i.e. no drop is detected, unless 

the outward pixel search parameter (NumPix) is large enough to include both vessel and 

surround.  Figure 5 shows NumPix = 4 is not sufficiently high to detect the widest vessels that 

NumPix = 7 can detect.   

 

        

                          (a)                                              (b)                                              (c) 

Figure 5. Mask Images with Different NumPix Values. (a) Original Image. (b) NumPix=4. (c) 

NumPix=7. 

 

 

2.5 NOISE ELIMINATION  

After implementing the above algorithm, noise sources such as brown network, blobs, 

hair, bubbles and brown network were marked. A noise filtering technique is used to mitigate 

these noise sources. Figure 6 (a) shows brown areas that are labeled as vessels using the vessel 

detection technique. The following sections present noise filtering approaches used to address 

the different types of noise sources. All of these techniques are applied on a pixel-by-pixel basis 

to pixels included in the vessel mask from the vessel detection algorithm.  
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2.5.1 Brown Network Filtering. Figure 6 (a) shows the mask result after applying 

above vessel detection algorithm, with most noise due to brown areas.  Let RGB represent the 

red, green and blue values, respectively, at a pixel location within the lesion or pixels within 

brown network structures, G > B, since brown is a degraded orange, which has G > B. The 

opposite is true for vessels. We find that this condition, G>B+5, could be used to filter the 

brown area as shown in Figure 6 (b). Figure 6 (c) shows the mask result using the filter 

condition G>B+20 for comparison purposes.  Based on empirical analysis of the dataset, as can 

be observed comparing Figure 6 (b) and Figure 6 (c), the filter condition G>B+5 provided 

optimal removal of brown areas compared to other G and B combinations.    

 

 

 

                                              (a)                                                        (b) 

 

                                                               (c) 

Figure 6. Brown Area Filtering. (a) Brown Areas Labeled as Vessels. (b) Brown Areas after 

Removal from Vessel Mask by G>B+5 Filter. (c) Brown Areas after Removal from Vessel 

Mask by G>B+20 Filter.   Filter shown in (b) is optimal.   
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2.5.2 Hair Filtering. Hairs are noise found by the vessel algorithm, as shown in Figure 

7(a).  Hair is best distinguished from vessels by means of the variance of R/G, which is higher at 

hair boundaries than at blood vessel boundaries.  This is due to the very high relative drop in red 

moving from surround to inside the hair, compared to an essentially zero drop in red moving 

from surround to inside the vessel, as noted above in the color drop discussion in section 2d.  

Note that other features of hair- lower luminance, sharp double boundaries, and long and narrow 

shape, are all present in blood vessels.  The optimal hair filter, compared to other filters 

investigated, shown in Figure 7(b) employed a 5x5 sliding window to eliminate all pixels whose 

centered 5x5 surrounding areas had variance of the R/G  > 0.01, the highest ratio which 

eliminates almost all hairs and preserves vessels. Figure 7 (c) shows the unmarked hair part if 

setting the Red/Green ratio>0.02.  

2.5.3 Bubble Filtering.  From the skin lesion dataset, it was observed that there are dark 

and light red vessels.  For the light red vessels, the red color value is typically much larger than 

the green value at a given vessel pixel location, with the relationship generalized as G/R < 0.6 

based on empirical analysis of the dataset.  For the dark red vessels, the red color value is also 

typically larger than the green value at a given vessel pixel location, with the relationship 

generalized at G/R < 0.7 based on empirical analysis of the dataset.  Using G/R > 0.6 for light 

red values ranging from 0 to 130 and G/R > 0.7 for dark red values ranging from 0 to relative 

red were used to reduce the labeling of bubble type regions as vessels.  Figure 8 presents a skin 

lesion image example showing the original image with bubbles in (a), bubble regions labeled as 

vessels using the vessel detection algorithm in (b) and the reduction of bubble regions labeled as 

vessels in (c).   

 

 

   

                      (a)                                         (b)                                          (c)            

Figure 7. Hair filtering.  (a) Hair labeled as vessels. (b) Hair Areas after Removal by R/G >0.01 

Filter (c) Hair Areas after Removal R/G> 0.02 Filter.  Filter shown in (b) is optimal.   
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                         (a)                                         (b)                                           (c) 

Figure 8.Bubble filtering. (a) Original image. (b) Bubble labeled as vessels. (c) Unmarked 

bubble using the algorithm presented above. 

 

 

2.5.4 Blob Filtering for Mask Density. Some blobs such as the ulcer in Figure 9 satisfy 

color drops and remain in the vessel mask.  A 41x41 square mask centered on all mask pixels is 

used for a density screen.  A density screen of 70% or more of the pixels inside this square is 

used, and all centered pixels with high density are unmarked (arrow in Figure 10(c)). Figure 

10(d) shows the comparison image with setting the density 80% 

 

 

 

                   (a)                                (b)                                 (c)                                  (d) 

Figure 9. Blob density filtering. (a) Original image. (b) Big blob labeled as vessel. (c) Unmarked 

big blob. (d) Big blob unmarked with 80% density. 

 

 

2.5.5 Post-processing: Connecting Vessel Segments. Image dilation and erosion are 

used to connect vessel segments.  After noise filtering, vessel segments become disconnected. 

The disconnected segments are joined by first dilating and then eroding with a circular 

structuring element. Connecting segments is accomplished using a dilating element of greater 

radius than the eroding element.  The optimum radii are found to be 3 for dilation and 2 for 

erosion, as shown in Figure 10.     
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                                               (a)                                                           (b) 

Figure 10. (a) Mask after noise filtering. (b) Mask after dilation, radius 3, and erosion, radius 2.  

 

 

2.5.6 Post-processing: Length and Area Lower Bounds. The vessel mask after 

performing all of the previous noise removal steps was still noisy.  The vessel mask image is 

skeletonized using Matlab® function bwmorph (BW, ‘skel’) to ,remove short objects that are 

not long enough to be considered linear vessels (< 30 pixels long) or too small (< 40 pixels 

area).  The result of the area lower bound is shown in Figure 11.              

 

        

  

                                             (a)                                                          (b) 

Figure 11. Lower area bound. (a) Mask with noise. (b) Mask after area lower bound. 
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2.5.7 Post-processing:  Independent and Principal Component Analysis, Histogram 

Pursuit. The final vessel masks on some images do not detect all the vessels and do not detect 

all segments of detected vessels. Fainter vessels and fainter vessels segments are least likely to 

be detected. Because the vessel masks at this stage were reliable, an attempt was made to 

expand the  

amount of vessel area found without finding many false vessels. Three techniques were tried.  

Although independent component analysis [13] proved better than principal component analysis 

[14], almost no new vessel areas were found with either method.  Similar results were found 

with independent histogram pursuit [15].   

 

2.6 VESSEL FEATURE GENERATION  

Vessel masks are computed on the skin lesion image dataset using the algorithm 

presented in section 2.a-2.h above.  The final vessel masks on some benign images may have 

telangiectatic vessels.  Table 1 presents the vessel-based features investigated in order to 

discriminate BCC from benign skin lesions images. The first 10 features are general vessel 

descriptors (1-10).  For this feature group, the first six features were selected to best represent 

the narrower, longer, and more numerous vessels in BCC. The seventh feature, standard 

deviation of object (vessel) width, represents the more uniform width of BCC vessels. The next 

three eccentricity features represent the straighter vessels in BCC (Figure 1). The second feature 

set, denoted as Object Area Descriptors, includes 10 features computed by morphologically 

eroding the vessel mask with a circular structuring element of radius from 1 to 10 and finding 

the remaining total mask area after each erosion and dividing the remaining mask area by the 

lesion area. The third feature set, denoted as Object Number Descriptors, includes 10 features 

determined by morphologically eroding the final vessel mask with a circular structuring element 

of radius from 1 to 10 and record the remaining object number after each erosion.  The Object 

Area and Object Number Descriptors represent different approaches to quantify variations in 

vessel width.  Although the classic dermoscopy feature for BCC is arborizing telangiectasia, 

with varying vessel widths, observation of numerous vessels in BCC and benign images shows a 

greater variation in benign vessel widths, as seen in Figure 1.  Upon computing the features for 

the entire dataset, multivariate analysis was performed using the SAS procedure logistic 

stepwise logistic procedure to determine for feature analysis and selection. The measures 

included in the final model are shown in Table 2 in the order selected using the feature labels 

from Table 1. The most significant measures in the final model measured the thinness and 

straightness of the vessels. The SAS stepwise selection by logistic procedure resulted in the 
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following variables in the final model. Chi-square significance in the model, which tests against 

the null hypothesis that the predictors’ regression coefficient is not equal to zero in the model, is 

shown in the rightmost column of Table 2[16].  

 

Table 1. Vessel-based features investigated with descriptions. 

Feature 

Number 

Measure (all 

normalized for area 

except those 

marked*) 

Description (measures marked # taken 

after skeletonizing) 

Meaning 

1 Object number Total number of vessels/lesion area 

  

Basal cell 

carcinoma (BCC) 

have more vessels 

2 Maximum object 

length 

Maximum length for all vessels/square 

root lesion area  

BCC vessels are 

longer 

3 Average object length Average length for all vessels/square root 

lesion area 

BCC vessels are 

longer 

4 Maximum object area Maximum area for all vessels/lesion area BCC vessels are 

larger 

5 Average object area Average area for all vessels/lesion area BCC vessels are 

larger 

6 Average object width Average width for all vessels/square root 

lesion area 

BCC vessels are 

narrower 

7 Standard deviation 

object width* 

Standard deviation for all vessel widths BCC vessel 

widths are 

more uniform 

8 Maximum 

eccentricity* 

Maximum ratio of distance between the 

foci of the ellipse enclosing the vessels 

and its major axis length 

BCC vessels are 

straighter 

9 Average eccentricity* Average ratio of the distance between the 

foci of the ellipse enclosing the vessels 

and its major axis length 

BCC vessels are 

straighter 

10 Minimum 

eccentricity* 

Minimum ratio of the distance between 

the foci of the ellipse enclosing the 

vessels and its major axis length 

BCC vessels are 

straighter 

Object 

number 

descriptors 

(11–20) 

Object number after 

1–10 

erosions* (10 features) 

Erode the final vessel mask with circular 

structuring element of radius from 1 to 10 

and record the remaining object number 

after each erosion 

BCC object fewer 

after 

given number 

erosions 

Object area 

descriptors 

(21–30) 

Object area after 1–10 

erosions (10 features) 

Erode the vessel mask with circular 

structuring element of radius from 1 to 10 

and record the remaining mask area for 

each erosion and divide by square root of 

the lesion area 

BCC object areas 

smaller after 

given number 

erosions 
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Table 2. Feature measures generated from final vessel mask, included in final model, SAS 

procedure logistic. 

Order of feature selection Feature number Chi-Square Significance 

1 30 <.0001 

2 9 <.0001 

3 2 0.0210 

4 8 0.1836 

5 6 0.0602 

6 7 0.0101 

7 11 0.0816 

8 12 0.0444 

9 16 0.1274 

10 29 0.1156 

11 21 0.0576 

12 22 0.0030 

13 17 0.2492 

 

 

2.7 NEURAL NETWORK METHODS FOR BCC DIAGNOSIS  

In order to evaluate the effectiveness of the vessel detection process, lesion 

discrimination is performed using the two classes Basal Cell Carcinoma (BCC) and benign 

lesions.   Standard backpropagation neural network architectures were explored for lesion 

discrimination.  All neural network architectures were implemented in Matlab®,using sigmoid 

transfer functions are in the input and hidden layers and a linear transfer function in the output 

layer.   
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3. EXPERIMENTS PERFORMED  

For BCC discrimination from benign lesions over the experimental data set, four 

different combinations of features computed from the telangectasia masks were investigated for 

inputs to the different neural network architectures. First, all 30 features listed in Table 1 were 

examined, including the general, object number descriptors and object area descriptors. An 

architecture of 

31x5x1 was used for the standard backpropagation neural network implementation, with 30 

features and a bias in the input layer, five nodes in the hidden layer and one output. Second, 20 

the general and object number descriptors from Table 1 were examined, providing 20 input 

features. An architecture of 21x5x1 was utilized for the neural network implementation. Third, 

the general and object area descriptors were explored, providing 20 features. An architecture of 

21x5x1 were used for the neural network implementation. Fourth, descriptors selected from 

logistic procedure given in Table 2, providing 13 features. An architecture of 14x5x1 was 

utilized for the neural network implementation. Because of the limited number of BCC cases, a 

leave-one-out training/test methodology is used for all neural network architectures. The neural 

networks are trained up to 15 epochs or until root-mean- square error was <0.001, using online 

(stochastic/delta) learning, with the weights adjusted after each pattern presentation. In this case, 

the next input pattern is selected randomly from the training set, to prevent any bias that may 

occur due to the sequences in which patterns occur in the training set. With the target value for 

the telangiectases data set set to 1 and the benign data set set to 0, network outputs after testing 

are between -1 and 1. ROC curves are generated for classification results based on the neural 

network outputs obtained for the leave-one-out cases. The ROC curve is a plot of the sensitivity 

for a binary classifier system as its discrimination threshold is varied. In other words, the ROC 

curve provides the corresponding true positive and false negative rates at each discrimination 

threshold. 
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4.  RESULTS 

Figure 12 shows the plot of ROC curves and areas under the ROC curves, denoted as 

AUC, for the neural network results based on the four different feature combinations using on-

line neural network training and leave-one-out training and testing.  For the different ROC 

curves presented, the vertical axis shows the true positive rate, and the horizontal axis gives the 

false negative rate.   

 

 

Figure 12. Receiver operating characteristic curve and area under curve (AUC) results for 

different feature combinations. (a) All 30 features from Table 1 with AUC=0.9548. (b) General 

descriptors and object area descriptors with AUC=0.9670. (c) General descriptors and the object 

number descriptors with AUC=0.9482. (d) Reduced feature set selected using SAS Procedure 

logistic with AUC=0.9547. 
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5. DISCUSSION 

5.1 DIAGNOSTIC ACCURACY  

Based on AUC analysis from Figure 12,  all feature combinations achieved at 94.8% 

diagnostic accuracy. The diagnostic results based on all 30 features are 95.5%. Using the general 

descriptors and object area descriptors adds approximately 1% to this diagnostic accuracy 

(96.7%), and using the general descriptors and object number descriptors subtracts 

approximately 1% from the diagnostic accuracy (94.8%). The reduced feature set based on SAS 

analysis yields AUC results (95.5%) similar to all 30 features but slightly <20 features 

consisting of the general descriptors and the object area descriptors. 

 

5.2 EXAMPLES OF ERRORS  

Figure 13 (a) shows one of the BCC images which is detected as a benign lesion falsely. 

The detected vessels are not long enough to be considered BCC telangiectasia.  Figure 13 (b) 

shows one of the benign lesion images which is discriminated as BCC falsely. The noise around 

the bubbles and the noise around the hair could not be removed after applying the noise filters. 

Those areas are long and big enough to be considered as telangiectasia. 

 

 

 

                                 (a)                                                                   (b) 

              Figure 13. BCC misdiagnosed.  (a)  Original image. (b) Telangiectasia mask. 
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5.3 RELATION TO CLINICAL PRACTICE  

Although textbooks describe telangiectasia visualized in basal cell carcinoma as 

arborizing, we found that arborizing telangiectasia are actually present in only a small number of 

basal cell carcinomas. Our attempt to capture this feature by eroding the telangiectasia by 

variably-sized structural elements and measuring areas left actually resulted in somewhat 

decreased classifier accuracy (Figure 12). In current clinical practice, it is possible to find 

smaller basal cell carcinomas by dermoscopy than by clinical inspection. These smaller basal 

cell carcinomas in our experience (wvs and dc) lack arborizing telangiectasia. Although almost 

all of these small BCCs have telangiectasia, they can be short and thin. Normalization of lengths 

and areas helps to detect these smaller BCCs.    

 

5.4 STRUCTURE DETECTION VS. DIAGNOSIS  

We have chosen BCC detection rather than vessel detection as the endpoint.  Although 

vessel detection is inherently easier, BCC detection has potential direct clinical application.  

Small BCC are detectable early by dermoscopy, and potentially detectable by the automated 

methods described here.    

 

5.5 LIMITATIONS OF STUDY AND SCOPE OF FUTURE RESEARCH  

Errors such as those shown in Figures 13 and 14 are due to 1) the inability of image 

processing to always eliminate noise, in this bubbles and hair which have sharp drops which 

mimic telangiectasia, 2) incomplete manifestation of telangiectasia in early lesions, and 3)  

presence of telangiectasia in many benign lesions. It is likely that the diagnostic accuracy can be 

improved by increased ability to find dim bubbles, such as those in Figure 14.   

Lesion images unselected and were acquired as time permitted in the clinic.  It is 

possible that the results obtained may not be generalized.  It is planned to pursue telangiectasia 

detection methods on a larger set of lesions.   
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                                  (a)                                                                 (b)  

   Figure 14. Benign lesion misdiagnosed. (a)  Original image. (b) Telangiectasia mask. 
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ABSTRACT 

This paper describes an image+text learning approach to automatically identify three graphical 

figure types commonly found in biomedical literature, namely, diagrams, statistical figures and 

flow charts. The main purpose of this work is to improve multimodal (image+text) information 

retrieval for figures in biomedical journal articles. In this contribution, we describe a data fusion 

approach to combine information from both text and image sources, believed to contain 

complementary information. Text information about the image is extracted from the figure 

caption. The data fusion process includes a hybrid of EA and BPSO (EABPSO) method applied 

to find an optimal subset of extracted image features with Chi-square statistic and information 

gain utilized to select the optimal subset of extracted text features. Then, an optimal subset of 

image features and an optimal subset of text features are input to Multi-Layer Perceptron Neural 

Network classifiers, respectively, whose outputs are characterized as fuzzy sets to determine the 

final classification result. Evaluation performed on 1707 figure images extracted from a test 

subset of BioMedCentral® journals extracted from PubMed Central ® repository provided by 

the U.S. National Library of Medicine yielded classification accuracy as high as 96.1%. 

Keywords: Image Processing, Feature Selection, Data Fusion, Binary Particle Swarm 

Optimization (BPSO), Evolutionary Algorithm (EA), Multi-Layer Perceptron Neural Network 

(MLP-NN), Fuzzy Set Union, Fuzzy Set Intersection 
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1. INTRODUCTION 

A variety of biomedical images needed for instructional purposes or in support of 

clinical decisions are often found in biomedical articles, but are not easily accessible to retrieval 

tools. Broadly, the images found as figures in the articles can be classified into two categories: 

regular and graphical images, respectively. Regular images are those that are acquired through 

an imaging device and include MRI, CT, X-ray, photographs, etc. Graphical images (also 

described as, graphics) are those that are created by authors to illustrate biomedical processes or 

content or biomedical data analyses. Graphical images can be further classified into four classes: 

diagrams, statistical figures, flow-charts, and tables. It is necessary to annotate these images to 

support multimodal (image + text) medical information retrieval and clinical decision support 

systems. Image type identification is a key step toward such automatic annotation for figures 

extracted from scientific publications. The task of separating regular images from graphics is 

reported in [1] and the task of separating diagrams, statistical figures, flow-charts, and tables is 

reported in [2]. In this research, we classify diagrams, statistical figures, flow-charts since tables 

are often represented in XHTML form in online articles today.  The classification is based on a 

larger amount of data set and combined information from both the images and their captions.  

For this purpose, 1707 graphical figures are selected from a test subset of BioMedCentral ® 

journals available in the Open Access dataset from the PubMed Central® repository of the U.S. 

National Library of Medicine, part of the National Institutes of Health. The caption for each 

figure is automatically extracted from NXML coded full-text journal articles using a rule-based 

script. Figure 1 provides the examples for each type of figure with its caption. Since both figure 

and its caption bring complete meaning to the image and they are complementary information 

for the reader, the objective of this project is to develop an image+text learning approach to 

identify the three graphics types, namely, graph, flow chart, and diagram. 
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                         (a)                                              (b)                                            (c)  

Figure 1. Examples of graphical figure with its caption. (a) Flow chart, (b) Graph, and (d) 

Diagram. 
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2.  RELATED WORK  

Several approaches to chart type identification have been proposed with varying degrees 

of success. Zhou et al proposed a method of graphics type identification based on the Hough 

transform [3]. Huang et al presented a classification method that uses the revised diverse density 

algorithm [4]. Liu et al developed an approach using vectorized graphical information extraction 

from an image [5]. There are some common drawbacks in these existing approaches. First, these 

approaches are developed to identify a particular graphic, viz., statistical charts, such as pie, bar 

and line charts. Second, only a small number of charts have been examined, which make the 

performance results published for these algorithms inapplicable for the wide variety of graphical 

image types. Finally, none of these algorithms integrate text and image information to do the 

classification while the caption usually contains important information about the image. i.e. the 

keywords “Flowchart”, “y-axis” and “picture” in the caption of Figure 1(a), 1(b) and 1(c) 

demonstrate each image’s type.   

Approaches to combine text and image information have been actively researched in the 

recent years. Shatkay et al described an approach for document categorization by using both 

subfigure identifier terms and text terms [6]. Caicedo et al presented a method for detecting 

relevant images for the query topic by combining visual features and text data using latent 

semantic kernels [7].  In this research, we implement a feature-based learning approach to 

classify flow chart, graph and diagram based on the following steps: 1), image features are 

extracted from each individual image and a hybrid of Evolutionary Algorithm and Binary 

Particle Swarm Optimization (EABPSO) method is investigated to find an optimal subset of 

extracted image features; 2), text features are extracted from each image’s caption and Chi-

square statistic and information gain are used to obtain an optimal subset of extracted text 

features; and 3), fuzzy logic union/intersection functions are used to fuse both image and text 

classification outputs.     

The remaining sections of this paper include the following: the image feature extraction 

and selection, the text feature extraction and selection, and fuzzy logic union/intersection 

functions to combine classifiers’ outputs, experiments results, discussion and conclusions. 
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3. IMAGE FEATURE EXTRACTION AND SELECTION  

3.1 IMAGE FEATURE EXTRACTION  

The approach for image feature extraction is provided in [2]. Those extracted seventy-

nine features can be grouped into five sets, viz., textural features, shape features, weighted 

density distribution (WDD) features, Hough features and hole object features. Besides Hough 

features are used in previous research [3], textural features measure smoothness, coarseness, and 

regularity of an image; shape features extract edge (object shape) characteristics in the image; 

WDD features measure the image’s symmetry; hole object features compare the objects in an 

image.  

3.2 IMAGE FEATURE SELECTION  

Three different feature selection algorithms have been examined in [2] to obtain the 

optimal feature subset, which are Evolutionary Algorithm (EA), Binary Particle Swarm 

Optimization (BPSO) and a combined Evolutionary Algorithm and Binary Particle Swarm 

Optimization (EABPSO), the result in [2] proves the hybrid one generate the best output. 

Therefore, we apply the hybrid of EA and BPSO (EABPSO) method to find an optimal subset of 

extracted image features and an optimal subset of extracted text features. The scheme, where 

each individual in a population is an N-dimensional binary vector with each element of the 

vector representing a feature and N being the total number of features, is used for candidate 

(feature subset) representation,. For each element of the binary vector, ‘1’ means that the 

corresponding feature is selected. The initial population is randomly initialized in the sense that 

each element in a vector is randomly picked as 0 or 1. The fitness value for EABPSO is set to 

the accuracy of the classifier applied to the selected feature set.  

Figure 2 shows an overview of the EABPSO procedure. As can be seen, EA and BPSO 

both work with the same initial population. To solve an M-dimensional problem, 2M individuals 

are randomly generated in the sense that each element in an individual is randomly picked from 

0 or 1. These individuals may be considered analogous to chromosomes in the case of EA, or as 

particles in the case of BPSO. The 2M individuals are sorted by fitness, and the top M 

individuals are fed into EA to create M new offspring by crossover and mutation operations, as 

described in [2]. The new offspring are used as the input to BPSO to compute M new particles. 

The new parent and new particles are combined and sorted in preparation for repeating the entire 

run. 
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Figure 2. Overview of EABPSO procedure. 
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4. TEXT FEATURE EXTRACTION AND SELECTION  

4.1 TEXT FEATURE EXTRACTION  

The caption corresponding to each image is collected in a separate data set.  Each word 

extracted from the caption becomes a feature and its numeric value is its occurrence frequency. 

Then the raw data is cleaned by removing frequently occurring words and reducing the words to 

their etymological stems. The cleaned word vector is analyzed to have the most relevant features 

selected for the modeling stage as shown in the following section.  

4.2 TEXT FEATURE SELECTION  

After converting the caption list into a cleaned and reduced feature list, we obtain 

approximately a 1080 word vector. It is unnecessary to implement all of these features as the 

post-processing input since certain features in the initial data are either ineligible to be used as 

independent variables for the data mining tasks or are irrelevant to the project and it is time 

consuming to process with the entire word vector.  The top two hundred features which contain 

more important information than others would be chosen as the input features based on different 

criteria such as information gain and chi-square. These two different techniques to select the 

most relevant features for classification are described as follows. 

Information gain: information gain [8] is frequently employed as a term-goodness 

criterion in the field of machine learning. It measures the number of bits of information obtained 

for category prediction by knowing the presence or absence of a term in a caption. The top 

twenty features with its information gain value as ranked by the information gain filter in Weka 

are listed in Table 1. 

 

 

Table 1. Top 20 features with its information gain value. 

flow 0.22442 stud  0.11965 chart  0.09159  tr 0.07891 

signif 0.07661 diagram 0.06933 group  0.06722 differ  0.0579 

valu 0.05728 flowchart 0.05546 particip 0.04419 surviv  0.04094 

tim  0.03842 plot  0.03726  lin  0.03707 scor  0.03593 

titl  0.03476 curv  0.03472 schem  0.0347 error 0.03243 
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Chi-square statistic: Chi-square[9] is one of the most widely used theoretical probability 

distributions in inferential statistics. A chi-square statistic is used to investigate whether 

distributions of categorical variables differ from one another. These top twenty ranked features 

are shown in Table 2. 

 

 

Table 2. Top 20 features with its Chi-square value. 

flow 563.76962 stud 315.90134 chart 229.37274 tr  209.13612 

diagram 168.19293 signif  141.32304 group 134.91097 flowchart 132.43568 

particip 119.29557 differ 114.44652 valu 112.49262 schem  96.12087 

draw  90.75539 titl  79.46252 random 78.28262 proc  75.5469 

select 73.88812 tim  73.84643 recruitm  73.19221 map  69.98771 

 

 

The list of features obtained from each of these methods is combined to create a list of 

most selected features. Two hundred features are chosen to create the final feature list. 
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5. OUTPUT COMBINATION  

We integrated both image and text features for the purpose of image classification. After 

getting the output from the classifier of the optimal image feature subset and the output from the 

classifier of the optimal text feature subset, the final output is generated by combining these two 

results. Fuzzy logic controller (FLC) can be used to deal with this problem since this problem 

has nonlinear and imprecise measurement information and FLC allows nonlinear input/output 

relationship to be expressed by a set of qualitative if then rules. However, it is difficult to set the 

optimal cut-off value to produce a degree of membership for each fuzzy set as well as the fuzzy 

rules.  Thus some classes of fuzzy set unions and intersections are implemented here to fuse two 

outputs from the classifiers. Five proposed classes of fuzzy set union along with the 

corresponding class of fuzzy set intersections are given in Table 3.  

 

 

Table 3. Five classes of fuzzy set union and intersection. 

Reference Fuzzy Unions Fuzzy Intersections Range of 

Parameter 

Schweizer& 

Sklar[10] 

         (   )   (   )             (           )       (    ) 

Frank[11] 
         

(      )(      )

   
         

(    )(    )

   
 

  (   ) 

Yager[12]        (     )              ((   )  ( 

  ) )     

  (   ) 

Dubois & Prade[13]            (       )

    (         )
 

  

    (     )
 

  (   ) 

Dombi[14]  

   (
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6. EXPERIMENTAL RESULTS  

The experimental data set consists of 1707 medical images annotated by type including 

324 diagrams, 905 graphs, and 478 flow charts, extracted from a test subset of BioMedCentral® 

journals selected from the Open Access subset of NLM’s PubMed Central repository.  

79 image features are extracted from these images and EAPSO is applied to find an 

optimal subset of extracted features that are then classified using MLP Neural Network. For 

training the MLP Neural Network, we have its architecture as (X+1)x10x3 consisting of an input 

layer of X selected features obtained from EAPSO and a bias with linear neurons, a hidden layer 

of 10 neurons with sigmoid transfer functions, and an output layer of three output with a linear 

neuron. The classification output can be written as below: 

 

                             (        )                                                                    (1) 

 

Where          is the i output of neural network. A five-fold cross validation is used to set up 

the training and testing data sets. The data set is divided into five parts where 4/5th is used for 

training and the rest is used for testing. This procedure is repeated five times. Therefore, for 

each time, the training set is 1366 and the representative test set is 341 images. The accuracy of 

the classifier presented in the next section is based on averaging the accuracy of the five test 

sets. We can measure recall, precision, and accuracy as summarized in Table 4.  Precision and 

recall for each image type are defined as: 

 

           
  

     
;        

  

     
                                                                                          (2)   

 

Where, tp is the number of true positives, i.e., the number of flowchart identified as flow chart, 

fp is the number of false positive, i.e., the number of flowchart identified as non-flowchart, fn is 

the number of false negative, i.e., the number of non-flowchart identified as flowchart. Recall in 

this context is also referred to as the True Positive Rate.  
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From Table 4, Neural Network delivers 1)93.2% with the entire image feature set and 

2)94.4% with the optimal image feature subset. The number of selected features is 45. 

1080 text features are initially extracted from each image caption and we obtain 200 top 

ranked features from them based on the information gain and Chi-square criteria. Similar as the 

image feature classification training, these 200 features are used to train a MLP neural network, 

with the architecture 201x10x3 consisting of an input layer of 200 features and a bias with linear 

neurons, a hidden layer of 10 neurons with sigmoid transfer functions, and an output layer of 

three output with a linear neuron. The result is given in Table 5 based on a five-fold cross 

validation.  

Then we use fuzzy logic union/intersection function (Table 3) to combine the image 

classification output and the text classification output. Take the fuzzy intersection function from 

Dubois & Prade for example. The combined output can be written as:  

 

                        
                

    (                  )
                                                               (3) 

                           

where   (   ) ,          is the i output of neural network trained by image features, 

        is the i output of neural network trained by text features. Table 6 provides the final 

prediction accuracy with the chosen parameter.   

 

 

Table 4. Performance comparison for image feature set with MLP NN classifier. 

 Entire Set Optimal Subset(45) 

Precision Recall Precision Recall 

FlowChart 0.955 0.937 0.954 0.950 

Graphic 0.947 0.944 0.953 0.958 

Diagram 0.86 0.892 0.903 0.895 

Accuracy 93.2% 94.4% 
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Table 5. Performance for text feature set with MLP NN classifier. 

FlowChart 0.868 0.866 

Graphic 0.888 0.935 

Diagram 0.859 0.735 

Accuracy 87.8% 

 

 

Table 6. Performance for combination by fuzzy logic union and intersection. 

Reference Fuzzy Unions Parameter Fuzzy Intersections Parameter 

Schweizer & Sklar 94.4% p=-1 95.5% p=-0.7 

Frank 96.0% s =2 95.4% s=4 

Yager 96.1% w=1 95.4% w=6 

Dubois & Prade 96.0%   =0.1 95.4%   =0.1 

Dombi 96.0%   =0.1 95.4%   =10 
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7. DISCUSSION AND CONCLUSIONS 

As seen in Table 4, the higher image feature classification accuracy of 94.4% is 

achieved with the feature subset selected by EAPSO than the entire feature set, which shows 

that EAPSO removes the negative related or unrelated features. Besides, as shown in Table 6, 

the accuracy of every combination by fuzzy logic union and intersection is at least the same as 

the accuracy of either image feature or text feature. The best overall classification accuracy is 

96.1% by Yager with the parameter w to be 1.  

This research presents a first exploration of the image type classification by combining 

both image information and its caption information, extended from the previous research [2]. 

This research shows data fusion techniques are useful with the early data fusion to remove the 

negative related or unrelated features and the late data fusion to combine the resource 

information. In addition, this research proves that the caption data has much to offer in support 

of image type classification. The experimental results demonstrates that integration of various 

image processing techniques, feature extraction techniques, and data fusion techniques for 

information combination as proposed in this paper can achieve high classification accuracy. 

Future research will focus on character recognition within these image types and statistical chart 

interpretation. 
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ABSTRACT 

Biomedical journal articles contain a variety of image types that can be broadly classified into 

two categories: regular images, and graphical images. Graphical images can be further classified 

into four classes: diagrams, statistical figures, flow charts, and tables. Automatic figure type 

identification is an important step toward improved multimodal (text + image) information 

retrieval and clinical decision support applications. This paper describes a feature-based learning 

approach to automatically identify these four graphical figure types. We apply Evolutionary 

Algorithm (EA), Binary Particle Swarm Optimization (BPSO) and a hybrid of EA and BPSO 

(EABPSO) methods to select an optimal subset of extracted image features that are then 

classified using a Support Vector Machine (SVM) classifier. Evaluation performed on 1038 

figure images extracted from ten BioMedCentral® journals with the features selected by 

EABPSO yielded classification accuracy as high as 87.5%. 

Keywords:  image processing, feature selection, Binary Particle Swarm Optimization (BPSO), 

Evolutionary Algorithm (EA), Support Vector Machine (SVM), graphical image 
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1. INTRODUCTION 

A variety of biomedical images needed for instructional purposes or in support of 

clinical decisions are often found in biomedical articles, but are not easily accessible to retrieval 

tools. Broadly, the images found as figures in the articles can be classified into two categories: 

regular and graphical images, respectively. Regular images are those that are acquired through 

an imaging device and include MRI, CT, X-ray, photographs, etc. Graphical images (henceforth, 

graphics) are those that are created by authors to illustrate biomedical processes or content or 

biomedical data analyses. These images can be further classified into four classes: diagrams, 

statistical figures, flow-charts, and tables. Although tables are often represented in XHTML 

form in online articles today, older issues still provide them as images. It is necessary to 

annotate these images to support multimodal (image + text) medical information retrieval and 

clinical decision support systems. Graphical figure type identification is a key step toward such 

automatic annotation for figures extracted from scientific publications. The task of separating 

regular images from graphics is also a goal of the project and has been reported earlier [1]. 

Graphics used in medical articles often appear in a variety of formats such as tables, 

graphs, flow charts, and diagrams as illustrated in Figure 1. For this paper, we use 1038 

graphical images selected from ten BioMedCentral journals (Cancer, Cardio, Urology, 

Gastroenterology, Musculoskeletal Disorders, Nephrology, Ophthalmology, Pulmonary 

Medicine, Surgery and Dermatology) available in the Open Access dataset from the 

PubMedCentral® repository of the National Library of Medicine, part of the U.S. National 

Institutes of Health. The objective of this project is to develop a feature-based learning approach 

to identify the four graphics types, viz., table, graph, flow chart, and diagram. 

This article describes our feature-based learning approach applying Evolutionary 

Algorithm (EA), Binary Particle Swarm Optimization (BPSO) and a hybrid of EA and BPSO 

(EABPSO) methods to an optimal subset of extracted image features which are then classified 

using a Support Vector Machine (SVM) [2] classifier. The proposed approach can address 

complex, hybrid, and composite graphics, which existing approaches [3, 4, 5] fail to identify 

satisfactorily. For example, the widely used Hough transform [3] can identify chart types such 

as pie charts and bar charts by detecting arc and line components inside the image based on the 

fact that arcs only appear in pie charts while vertical lines with similar length often exist in bar 

charts. 

We also address other graphics types such as tables and flow charts with more 

complicated compositions. For example, the X-axis in a graph does not have to be present 
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(Figure 1(a)); a flow chart can contain curved lines (Figure.1(b)); some blocks in a table may be 

missing (Figure 1(c)); and a diagram may have pictures within it (Figure.1(d)). Classifying such 

figures can be more challenging. To address these challenges, multiple features, including 

textural features [6, 7], region property features [8, 9], weighted density distribution (WDD) 

features [8, 10], Hough features [3] and hole object features, associated with the chart types are 

extracted. A hybrid of Evolutionary Algorithm [11] and binary Particle Swarm Optimization 

[12] (EABPSO) is employed to remove irrelevant features using the SVM classifier’s output as 

feedback for evaluating the merits of a generated feature subset.  

 

 

 

(a)                                   (b)                                    (c)                                    (d) 

Figure 1. Graphical image type examples. (a) Graph, (b) Flow chart, (c) Table, and (d) Diagram. 
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2. RELATED WORK  

Several approaches to chart type identification have been proposed with varying degrees 

of success. Zhou et al proposed a method of graphics type identification based on the Hough 

transform [3]. Huang et al presented a classification method that uses the revised diverse density 

algorithm [4]. Liu et al developed an approach using vectorized graphical information extraction 

from an image [5]. There are two common drawbacks in these existing approaches. First, these 

approaches are developed to identify a particular graphic, viz., statistical charts, such as pie, bar 

and line charts. Second, only a small number of charts have been examined, which make the 

performance results published for these algorithms inapplicable for the wide variety of graphical 

image types.  

Techniques from existing research are implemented to detect flow charts. Take Figure 

1(b) as an example. Text is first removed from an image and an edge map is obtained through 

edge detection (Figure 2(a)); Next, straight lines are detected by using the Hough transform 

(Figure 2(b)). There are three problems with this approach. First, it cannot detect all the lines if 

there are a large number of line segments of various lengths in a chart. Second, even if all of the 

lines and arcs are precisely detected by the Hough transform or by the Line net global 

vectorization [13], it is still difficult to determine the chart type due to complex composition. 

For example, both flow charts and diagrams can contain lines and arcs. Third, removing text 

from an image may also remove important information in the chart. For example, only lines are 

left after preprocessing the table (Figure 2(c)) using this approach. 

To solve the first and second problems, in addition to lines and arcs, more features that 

are associated with the shape of a chart need to be considered, for example, the region property 

features and weighted density distribution features. For the third problem, textural features are 

extracted before removing the text. However, feature extraction may yield some features that are 

not relevant to classification. Incorporation of these unrelated features may have an adverse 

effect on the classifier’s performance. Feature selection [14], the process of selecting the best 

feature subset that contains the least number of features, contributes most to accuracy and 

efficiency. Both EA and PSO are stochastic search procedures and are generally suitable for 

solving this problem.  However, EA has a slower convergence rate so that it usually takes longer 

to reach the global optimum while PSO has a higher convergence speed and is easily trapped in 

local optimum, as shown in Section 5. Therefore, a hybrid of EA and PSO is developed to 

combine the advantages of both and is described in Section 4. 

 



www.manaraa.com

119 

 

 

   

                       (a)                               (b)                          (c) 

Figure 2. Examples illustrating problems, discussed in Section 2, in existing approach after 

preprocessing. (a) Flow chart. (b) Flow chart with marked straight lines. (c) Table image. 
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3. METHODS  

In our approach, an image is preprocessed in four steps with various features extracted 

at each step. This process is illustrated in Figure 3. The first step is to convert the original image 

(Figure 3(a)) to a gray scale image (Figure 3(b)) and extract textural features [6, 7]. Second, the 

gray scale image is binarized using Otsu's method [15] and then small objects with short length 

are removed so that it contains only frame-like objects (Figure 3(c)). Shape features, weighted 

density distribution features can be extracted. Third, the Sobel edge filter [16] is applied to the 

binary image and Hough features are computed (Figure 3(d)). Finally, the hole inside the binary 

image is filled [17] and features from these holes are extracted (Figure 3(e)).  

 

 

  

             (a)                             (b)                               (c)                              (d)                             (e) 

Figure 3. Image preprocessing example. (a) Original image. (b) Gray image. (c) Binary image 

with chart frame. (d) Binary image with chart frame edge. (e) Binary image with hole objects. 

 

 

The features thus obtained are then evaluated and subsets are selected by applying 

feature selection algorithms, i.e., EABPSO. The results from the classifier are used as feedback 

for assessing the merits of the candidate feature subset. This process proceeds iteratively until an 

optimized feature subset is obtained. The optimized feature subset is used as the input to the 

classifier, which determines the type of the chart.  

 

3.1 FEATURE EXTRACTION  

Relevant features extracted from the gray scale image and the three object mask images 

can be grouped into five sets, viz., textural features, shape features, weighted density 

distribution (WDD) features, Hough features and hole object features. Besides Hough features 

are used in previous research, textural features measure smoothness, coarseness, and regularity 

[7] of an image; Shape features extract edge (object shape) characteristics in the image; WDD 
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features measure the image’s symmetry; hole object features compare the objects in an image. 

Table 1 summarizes these features and further explanations of these are given as follows. 

A. Textural features: The textural features are items 1 to 6 in Table 1. However, these 

features use only histograms, which carry no information regarding the relative positions of 

pixels with respect to each other. To solve this problem, a co-occurrence matrix [7] is used 

which considers pixel position. Additional textural features from these co-occurrence matrices 

are labeled 7 to 30 in Table 1. 

B. Shape features: These features are based on region properties and are obtained by 

applying the MATLAB® function regionprops [18] to the entire image. Ten region property 

features extracted in this project are listed in Table 1 labeled 31~40. 

C. Weighted Density Distribution (WDD) features: The third set of 24 WDD features 

(rows 41 to 64 in Table 1) is obtained by computing a one dimensional shape profile of each 

object in the binary chart frame and correlating those profiles with WDD functions [19].  

D. Hough features: After the straight lines inside an image are identified by the Hough 

transform algorithm, five Hough features are generated as shown in Table 1 rows 65 to 73. 

E. Hole object features: This set of features is generated from the hole objects inside 

an image, as illustrated in Figure 4(d). The hole objects are obtained by applying the hole filling 

algorithm [17]. Five hole object features are generated for the sample image in this paper. They 

are shown in Table 1 rows 74 to 79. 

 

3.2 CLASSIFIER  

SVM classifier is chosen since it delivers a deterministic solution. The key features of 

SVMs are the use of kernels, the absence of local minima, the sparseness of solution, and the 

capacity control achieved by optimizing the margin.  
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Table 1. Extracted Features. 

Feature set Label Measure Description 

Textural 

features 

 

1 Mean of histogram The first moment of gray image 

2 Variance of histogram The second moment of gray image 

3 Skewness of histogram The third moment of gray image 

4 Flatness of histogram The fourth moment of gray image 

5 Maximum of histogram Uniformity of gray image 

6 Entropy of histogram Average entropy of gray image 

7~10 Contrast The intensity contrast of correlation matrices 

11~14 Correlation The correlation of correlation matrices 

15~19 Uniformity The uniformity of correlation matrices 

20~23 Closeness The homogeneity of correlation matrices 

24~27 Strongest response The maximum probability of correlation matrices 

28~30 Randomness The average entropy of correlation matrices 

Shape 

features 

 

31 MajorAxisLength Length (in pixels) of the major axis of the ellipse that has 

the same normalized second central moments as the region. 

32 MinorAxislength Length (in pixels) of the minor axis of the ellipse that has 

the same normalized second central moments as the region . 

33 Axis ratio Ratio of MajorAxisLength to MinorAxislength. 

34 Normalized area Area of the region divided by the whole image.   

35 Solidity Area of the region divided by the convex hull area. 

36 EulerNumber The number of objects in the region minus the number of 

holes in those objects. 

37 EquiDiam The diameter of a circle with the same area as the region. 

38 Extent Ratio of area to bounding box area 

39 Horizontal MinPixelNo The minimum number of intersection area for the object 

and its bounding box horizontally.  

40 Vertical MinPixelNo The minimum number of intersection area for the object 

and its bounding box vertically. 

WDD 

features 

41~64 WDD  Correlation of binary chart frame and WDD function. 

Hough 

features 

65 Line number Number of straight lines 

66 Longest line length Longest line’s length 

67 Longest line slope Longest line’s slope 

68 2nd Longest line length Second longest line’s length 

69 2nd Longest line slope Second longest line’s slope 

70 Line slope Average value of lines’ slope 

71 Line length Average value of lines’ length 

72 Variance of line slope Variance of lines’ slope 

73 Variance of line length Variance of lines’ length 

Hole 

Object 

features 

 

74 Hole number Number of hole objects 

75 Largest hole area Area of largest hole object 

76 Hole area Average hole objects’ area, 

77 Area variance Variance of hole objects’ area, 

78 Area ratio Average ratio of hole object’s area to its bounding box’s 

area 

79 Area ratio variance Variance of ratio of hole object’s area to its bounding box’s 

area.  
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4. OPTIMAL FEATURE SELECTION 

After the 79 features listed in Table 1 are extracted from the images, Evolutionary 

Algorithm (EA), Binary Particle Swarm Optimization (BPSO) and a combined Evolutionary 

Algorithm and Binary Particle Swarm Optimization (EABPSO) are then applied to obtain the 

optimal feature subset. They all use the same scheme for candidate (feature subset) 

representation, where each individual in a population is an N-dimensional binary vector with 

each element of the vector representing a feature and N being the total number of features. For 

each element of the binary vector, ‘1’ means that the corresponding feature is selected. The 

initial population is randomly initialized in the sense that each element in a vector is randomly 

picked as 0 or 1. The fitness values for EA, BPSO and EABPSO are set to the accuracy of the 

SVM classifier applied to the selected feature set. The algorithms for generating the candidate 

feature subsets in EA, BPSO and EABPSO are described below. 

 

4.1 EVOLUTIONARY ALGORITHM (EA) 

The offspring of the Evolutionary Algorithm are generated as follows:  1) randomly 

select two parents from the parent pool of M initial candidates; 2) generate two offspring by 

applying a uniform [20] crossover operator; 3) offspring are then altered by performing a 

mutation operation. A random parameter ranging from 0 to 1 is generated for each bit of the 

candidate vector, which will flip once the parameter is greater than a predefined threshold.   The 

next parent pool is selected based on whether the parents or their offspring maximize the 

classification accuracy.  The same process is used for obtaining the next generation of offspring 

and this process is repeated for N epochs. From the final parent pool, the parent which 

maximizes the classification accuracy is selected as the final result. Since EA evaluates many 

points simultaneously in the search space it is more likely to find the global solution but at the 

cost of higher computation time.  

 

4.2 BINARY PARTICLE SWARM OPTIMIZATION (BPSO) 

In implementing BPSO, the velocity and position of a candidate are computed using 

Eq.1 and Eq. 2 respectively. A sigmoid transformation of the velocity component is applied to 

keep the velocity values constrained in the range (0, 1). However, the BPSO algorithm can be 

easily trapped into a local minimum and may lead to premature convergence. It has been 

observed that when BPSO reaches a local optimal solution, all particles tend to gather around it 

making it difficult to find a global optimum.  
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where t is the iteration index (time step), m is the current particle (1 m   M) in a 

population of M, n is the attribute element (1 n  ),    ( ) is the particle’s current velocity, 

   (   ) is the particle’s new velocity,    ( ) is the particle’s current position, and    (  

 ) is the particle’s new position,         is the global best position,         is the previous 

best position,    and    are the random value from 0 to 1, w is the learning weight, selected from 

0 to 1. 

 

4.3 EABPSO 

To address the individual shortcomings of these two algorithms, we design EABPSO 

combining the feature evolution idea of EA and BPSO into a hybrid solution appropriate for 

discrete (binary) problems. EABPSO is an improvement over prior hybrid evolutionary 

algorithms [21, 22] that solved continuous problems.  

Figure 4 shows an overview of the EABPSO procedure. As can be seen, EA and BPSO 

both work with the same initial population. To solve an M-dimensional problem, 2M individuals 

are randomly generated in the sense that each element in an individual is randomly picked from 

0 or 1. These individuals may be considered analogous to chromosomes in the case of EA, or as 

particles in the case of BPSO. The 2M individuals are sorted by fitness, and the top M 

individuals are fed into EA to create M new offspring by crossover and mutation operations, as 

described in section 4.1. The new offspring are used as the input to BPSO to compute M new 

particles as described in section 4.2. The new parent and new particles are combined and sorted 

in preparation for repeating the entire run. 

 

 

 

Figure 4. Overview of EABPSO procedure. 
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5. EXPERIMENTAL SETUP AND RESULTS 

The experimental data set consists of 1038 medical images annotated by type including 

306 diagrams, 329 graphs, 154 tables, and 249 flow charts, which are selected from the ten 

BioMedCentral journals mentioned in Section 1. 79 features are extracted from these images 

and optimal features selection step is applied. In the BPSO algorithm, the inertia weight w is 

empirically set to 0.8, the cognitive acceleration constant    , 1, and the social acceleration 

constant   , 1. In EA, the uniform crossover operator evaluates each bit in the parent strings for 

exchange with a probability of 0.5. The predefined mutation threshold is set as 0.8. EABPSO 

shares the same parameters with BPSO and EA. In addition, the dimension size (N) is the same 

as the number of features.  For training the SVM, Platt's sequential minimal optimization 

algorithm [23] was implemented. It globally replaces all missing values and transforms nominal 

attributes into binary ones. It also normalizes all attributes and uses the polynomial kernel by 

default. A three-fold cross validation is used to set up the training and testing data sets. The data 

set is divided into three parts where 2/3rd is used for training and the rest is used for testing. 

This procedure is repeated three times. Therefore, for each time, the training set is 692 and the 

representative test set is 346 images. The accuracy of the classifier presented in the next section 

is based on averaging the accuracy of the three test sets.    

Seven different schemes for feature subset selections are used. They are as follows: (i) 

Case 1: EA feature selection with uniform crossover operator; (ii) Case 2: BPSO feature 

selection; (iii) Case 3: EABPSO; (iv) Case 4: voting algorithm based on the selected feature set. 

The voting algorithm selects features based on the frequency of their occurrence in the three 

feature selection algorithms; (v) Case 5: Chi-square statistic [24]; (vi) Case 6: information gain 

[25] also used in order to compare classifier performance against EA, BPSO, EABPSO; and, 

finally, (vii) Case 7: uses all features as the input. 

In Figure 5, the root mean square error (RMSE) performance measures (1-Accuracy) for 

cases 1, 2 and 3 are shown as the training progresses for one run. The population size (M) is 30 

and the total training epoch (T) is 100.  Table 2 shows the final accuracy of the SVM for feature 

subset from case 1 to case 7. We choose the particle size (M) to be 20 and 30, the total training 

epoch (T) to be 50, 100 and 150.  Within the different combinations of the particle size (M) and 

the total training epoch (T), for case 1 to case 3, the best and averaged accuracy for the ten runs 

are listed in Table 2. The number of features in the subset is listed after the best accuracy. The 

accuracy of cases 4, 5 and 6 is also listed in Table 2 based on the feature combination that gives 

the best accuracy for case 1, 2 and 3. 
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Figure 5. Root Mean Squared Error (RMSE) versus iteration number for each of the feature 

selection schemes. 

 

 

As can be seen in Figure 5, for one hundred epochs, the accuracy ranking from high to 

low is 1) EABPSO, 2) EA, and 3) BPSO. BPSO stops converging at epoch 31; EA keeps 

converging until epoch 94; EABPSO achieves the global minimum at epoch 48. Figure 5 shows 

that BPSO algorithm gets trapped at the local minimum although it has a very fast convergence 

speed. EA does a good job to reach the lowest RMSE value but it takes a long time.  Since 

EABPSO combines the evolutionary ideas of both BPSO and EA where BPSO helps to enhance 

the offspring created by EA in order to generate fitter feature combinations (elites) in each 

epoch, EABPSO has the ability to attain the best RMSE at a higher speed. Also, with N features, 

the computational complexity is on the order of O(N!) if every possible combination of features 

is explored. The PSO/EA and EABPSO reduce the complexity to O(N). 

 

5.1 DISCUSSION  

As seen in Table 2, the best overall classification accuracy of 87.5% was achieved with 

feature subset selected by BPSO (case 2) and EABPSO (case 3) for population size 20 and 

training epoch 100/150.  For six different combinations of population size (M) and training 

epoch (T), EABPSO has the best accuracy. The average overall classification accuracy, 87.0% 

was achieved by both EA and EABPSO. This shows that EABPSO keeps delivering good and 

consistent results.  Further, with the same particle size (M =30) as the epoch increases from 100 

to 150 the average accuracy increases in EA (case 1) while staying the same in both BPSO (case 

2) and EABPSO (case 3). This is due to longer convergence time for EA also shown in Figure 5. 

For six different combinations of population size (M) and training epoch (T), the number of 

features for the best subset obtained by EABPSO (case 3) stays around 45, while EA and BPSO 

have a larger range. Also, the advantage of using the voting algorithm for feature selection is 
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seen through the consistently good overall performance of case 4 since the voting algorithm’s 

input features are the best selected features of cases 1, 2, 3. Justification for the usefulness of 

BPSO, EA and EABPSO is found through the observation that the highest classifier accuracies 

are achieved from cases 1-4.  

 

Table 2. Performance comparisons for different feature combinations. (M = population size; T = 

maximum #iterations, Performance/XX: Here XX = the number of features used in computing 

the performance). Best Performance in bold. 

 

 

 

 

 

 

 

 

 

 

 

Case No. Accuracy M=20, 

T=50 

M=20, 

T=100 

M=20, 

T=150 

M=30, 

T=50 

M=30, 

T=100 

M=30, 

T=150 

1. EA  (Average) 0.863 0.867 0.867 0.866 0.868 0.870 

(Best) 0.866/49 0.870/38 0.868/46 0.869/51 0.871/45 0.872/49 

2.BPSO  (Average) 0.864 0.869 0.869 0.867 0.867 0.867 

 (Best) 0.866/48 0.875/51 0.875/51 0.870/46 0.870/52 0.870/50 

3.EABPSO  (Average) 0.870 0.870 0.870 0.868 0.869 0.869 

 (Best) 0.872/48 0.875/45 0.875/46 0.871/48 0.872/43 0.872/43 

4.Voting 

algorithm 

Accuracy  0.870 0.872 0.872 0.869 

 

0.870 0.870 

5.Chi square  Accuracy 

 

0.846 

 

0.851 0.851 0.846 0.837 0.837 

6.Information 

gain 

Accuracy  0.846 0.850 0.850 0.846 0.836 0.836 

7.All features Accuracy 0.863 
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6. CONCLUSIONS 

This paper proposes a framework for graphical image type identification based on 

image feature analysis and computational intelligence techniques [26, 27]. Several feature 

extraction techniques are applied to the preprocessing of the images. Multiple features 

associated with the chart types are then extracted.  EA and binary PSO are employed to find the 

optimal subset of features since both are stochastic search procedures and are generally suitable 

for solving the optimization problem. PSO has a higher convergence speed but easily trapped in 

local optimum while EA usually takes longer time to reach the global optimum although it has a 

mutation operator that can keep it out of local minimum. Thus EABPSO is proposed to combine 

the new individual generation functions of both EA and PSO, to attain the global minimum at 

high speed. The experimental results demonstrate that integration of various image processing 

techniques, feature extraction techniques, and computational intelligence methods for optimal 

feature selection as proposed in this paper can achieve high classification accuracy.  
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ABSTRACT 

Biomedical images are often referenced for clinical decision support (CDS), educational 

purposes, and research. The task of automatically finding the images in a scientific article that 

are most useful for the purpose of determining relevance to a clinical situation is traditionally 

done using text and is quite challenging. We propose to improve this by associating image 

features from the entire image and from relevant regions of interest with biomedical concepts 

described in the figure caption or discussion in the article. However, images used in scientific 

article figures are often composed of multiple panels where each sub-figure (panel) is referenced 

in the caption using alphanumeric labels, e.g. Figure 1(a), 2(c), etc. It is necessary to separate 

individual panels from a multi-panel figure as a first step toward automatic annotation of 

images.  

In this work we present methods that add make robust our previous efforts reported here. 

Specifically, we address the limitation in segmenting figures that do not exhibit explicit inter-

panel boundaries, e.g. illustrations, graphs, and charts. We present a novel hybrid clustering 

algorithm based on particle swarm optimization (PSO) with fuzzy logic controller (FLC) to 

locate related figure components in such images.   

Results from our evaluation are very promising with 93.64% panel detection accuracy for 

regular (non-illustration) figure images and 92.1% accuracy for illustration images. A 

computational complexity analysis also shows that PSO is an optimal approach with relatively 

low computation time. The accuracy of separating these two type images is 98.11% and is 

achieved using decision tree.  

Keywords: Biomedical image analysis, biomedical article retrieval, content-based image 

retrieval, figure panels, image segmentation 
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1. INTRODUCTION 

Biomedical images are frequently used in publications to illustrate the medical concepts 

or to highlight special cases. They are invaluable in establishing diagnosis, acquiring technical 

skills, and implementing best practices in many areas of medicine. Conventional approaches for 

biomedical journal article retrieval have been text-based with little attention devoted to the use 

of images in the articles. Text-based retrieval uses text information automatically extracted from 

title, abstract, figure captions, and discussions (mention). It provides fairly good results; 

however, the relevance quality sometimes is not satisfactory. Content-based image retrieval 

(CBIR) also has been applied to biomedical image retrieval [1]. However, the retrieval 

performance is far behind the text-based retrieval due to several gaps [2]. Low level features 

such as color, textual, and shape used in CBIR are insufficient to represent medical concepts or 

meaningful diagnostic information in the images effectively. 

To improve the relevance quality of conventional retrieval approaches, we have 

proposed an approach using hybrid (text and image) features [3-8]. Information retrieval (IR) 

techniques are used to identify key textual features in the title, abstract, figure caption, and 

figure citation (mention) in the article. Structured vocabularies, such as the National Library of 

Medicine’s Unified Medical Language System (UMLS ®) are used as well to identify the 

biomedical concepts in these [3,7]. Unlike conventional CBIR that uses image features from the 

entire image, our proposed approach uses a combination of features computed over the entire 

image and those computed from specific image regions of interest (ROIs). In computing image 

features, however, it is necessary that the image should be unimodal and individual. Often, in 

biomedical articles author put related images from different modalities (CT, MR, or Ultrasound, 

for example) as different subfigures in a single figure, or put slices from a CT or MR study as 

subfigures. For CBIR to be effective it is necessary to separate individual subfigure panels.  

This article presents our efforts to improve our prior work [4, 5] on subfigure 

localization and segmentation toward improved biomedical article retrieval. In [4], the 

feasibility of automatically classifying images by usefulness (utility) in finding evidence was 

explored using supervised machine learning and achieved 84.3% accuracy using image captions 

for modality and 76.6% accuracy combining captions and image data for utility from articles 

over 2 years from a clinical journal. However, the figures images in this study had to be 

manually segmented into individual panels. In this work we present methods that add make 

robust our previous efforts [5] that, though successful, were limited in their scope and were 

unable to meet the challenges of segmenting figure illustrations, graphs, and charts. For the 
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latter, we present a novel hybrid clustering algorithms which are particle swarm optimization 

(PSO) with fuzzy logic controller (FLC) method to locate related figure components.  Results 

from preliminary evaluation are very promising with 93.64% accuracy for regular (non-

illustration) figure images and 92.1% accuracy for illustration images. The correctness of 

separating these two type images are 98.11% by using decision tree. More intensive tests are in 

progress to evaluate impact of automatic figure panel segmentation and use of ROI in image 

annotation and retrieval.  

This article is organized as follows. Section 2 describes prior work on the topic. Section 

3 describes the methods. Section 4 presents the experiments and we conclude with Section 5. 

 

 

   

(a) (b) (c) 

Figure 1. Examples of different types of multi-panel images. (a) Regular image. (b) Graph/chart 

image. (c) Mixed image. 
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2. PRIOR WORK 

In our prior work a heuristic two-phase algorithm was developed and applied for 

detection and decomposition of multi-panel images. Information from figure caption was used to 

obtain an estimate of number of panels [5]. The algorithm looked for strong white or black lines 

or a sharp transition between image panels. If any panels were found then the image was 

segmented along identified boundaries and recursively applied to segmented panels until no 

further segmentations are found. Detection and decomposition of multi-panel images was tested 

on 516 figure images extracted from 2 years (2004 – 2005) issues of the British Journal of Oral 

and Maxillofacial Surgery. In this set, 427 images were single panel images and 89 were multi-

panel. Overall 409 or 95.78% of the single panels and 84 or 94.38% of the multi-panel images 

were correctly identified. In case of multi-panel images, 6 of 84 had been correctly identified as 

multi-panel images having a disagreement with the caption analysis. This disagreement was 

usually minor (1 panel). These images are deemed as correct detection of a multi-panel image 

for purposes of that evaluation. Overall result combining these scores was 95.54% detection and 

decomposition accuracy. The method typically failed on cases where (i) inter-panel boundary 

width assumption exceeded our thresholds or (ii) there was a lack of a sharp transition between 

panels. A further limitation of the method is that it was heuristic and could not adapt to 

variations in the figure layouts. 
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3. METHODS 

For this research, we use 2111 medical images annotated by modality (radiological, 

photo, etc.) selected from 6 BioMedCentral journals (Cancer, AFPS, Urology, Surgery and 

Cardiovascular Ultrasound, Dermatology). The set comprises 1052 regular images (as shown in 

Figure 1(a)) and 1059 illustration images (as shown in Figure 1(b)).  An overview of the 

algorithm investigated is shown in Figure 2. 

 

          

 

Figure 2. Overview of sub-image segmentation process. 

 

 

3.1 IMAGE TYPE IDENTIFICATION  

As different methods are used to detect panels on multi-panel regular or illustration 

image, it is necessary to distinguish its type first. We generate 11 features for this purpose. 

These characteristic features with their explanations, information gain [9] values and chi-square 

[10] values are shown in Table 1.  Several discrimination methods were explored and we found 

that decision trees provided the highest accuracy of 98.11%. 
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Table 1. Information gain and chi-square value for image features useful in detecting image 

type. 

Features Inform-gain value Chi-square value 

Mean of red color value 0.859 1872.868 

Mean of green color value 0.929 1999.198   

Mean of blue color value 0.924 1985.9172 

Standard deviation of red color value 0.344 859.0623 

Standard deviation of green color value 0.33 833.523 

Standard deviation of blue color value 0.311 779.8279 

Mean of skewness of red color value 0.666 1557.3166 

Mean of skewness of green color value 0.804 1782.0291 

Mean of skewness of blue color value 0.803 1776.4037 

Mean of number of coherent pixels  0.53 1219.7187 

Mean of number of incoherent pixels 0.515 1211.3774 

 

 

 

3.2 SEGMENTING MULTI-PANEL REGULAR IMAGES  

A two-phase algorithm is developed and applied for decomposition of regular images. 

Such images tend to have strong inter-panel boundaries. First phase of the method detected 

these, as follows:  

1. Convert RGB images into gray images. 

2. Calculate the variance of each vertical line and horizontal line across the image. The line 

with low variance is marked as the boundary. Call this image_1 

3. Get the boundary edge with gray horizontal and vertical dynamic range between the 

minimum and maximum gray drop values of 10 and 25. A boundary edge is defined as a set 

of pixels whose horizontal neighbor difference is less than the minimum gray drop value 

while its vertical gray drop value is greater than the maximum gray drop value, or vice 

versa.  

4. A logical OR image outputs from steps 2) and 3). Call this image_2 

Figure 3 presents an image example of the image processing steps for the original image 

to generate the boundary output.  From image_1 and image_2, we compute the number of 

subfigure panels and assign them to variables: panel_1 and panel_2, respectively. In addition, an 

estimate of number of panels is obtained using Natural Language Processing (NLP) techniques 

from the figure caption [4], named panel_3. Next, four features are generated, which are 
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(i)panel_3 /panel_1, (ii)panel_3 /panel_2, (iii) standard deviation of the subpanels size from 

image_1, and (iv)the standard deviation of the subpanels size from image_2. 

The second phase is using above features as the input to train and test the neural 

network. The performance is computed by comparing the values of panel_1, panel_2, and 

panel_3 with a manually determined real_panel_number. If real_panel_number=panel_1, then 

the output is set to 1; else if real_panel_number=panel_2, then the output is set to 2; else if 

real_panel_number= panel_3, then the output is set to 3; else, it is set to 4. 

 

 

   

(a) (b) (c) 

  

(d) (e) 

Figure 3. Image processing algorithm example.  (a) Original image. (b) Gray image. (c) Output 

by using low variance line finding technique. (d) Output by using gray drop technique. (e) 

Output by Or ((c), (d)).   

 

 

3.3 SEGMENTING MULTI-PANEL ILLUSTRATION IMAGES 

Unlike regular images illustration images do not have a clear inter-panel boundary, but 

the separation is obvious to the human observer. This makes segmenting the panels more 

difficult. Some cues regarding illustration placement and size were used to develop an algorithm 

for segmenting the drawn groups. An overview of the algorithm investigated is shown in Figure 

4. Each flowchart component is discussed in turn. 
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Figure 4. Overview of multi-panel images decomposition process. 

 

 

Sobel edge operator: Edges in the image are computed in the vertical and horizontal 

direction using the Sobel edge detector [11] with kernel values shown in Equations (1) and (2).   

 

- 0.05 0        0.05 

dx =  -0.1 0        0.1                                                                                                           (1) 

- 0.05 0        0.05  

 

dy = dx’                                                                                                                             (2) 

The input image is convoluted with dx and dy and then Otsu’s filter [12] is applied to 

the output. The outputs are logically OR-ed to generate the image for use in the next step. 

Example images from this step are shown in Figure 5. 

Form bounding boxes: The image output from above step is processed to fill holes 

inside each foreground object. Small noise objects are removed by morphological processing. 

Bounding box can be drawn around each object and any overlapping bounding boxes are 

merged. Small bounding boxes may be removed. Example images from this step are shown in 

Figure 6 

Particle Swarm Optimization (PSO) with Fuzzy Logic Controller (FLC) clustering: 

As shown in Figure 7, some images may not result in bounding boxes surrounding each 

subfigure. To overcome this difficulty, we compare the number of bounding boxes with the 
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number of subpanel identified in the text caption using low variance line finding technique. If 

the number of bounding boxes is less equal to the number of subpanels then it is deemed correct. 

However if it is greater than the number of subpanels, an over-segmentation may be assumed 

and the particle swarm optimization (PSO) [13] algorithm is used to correct any error. Using 

shape, size, and position constraints, we devise a fitness function for the PSO algorithm (shown 

in Figure 8) where subfigure objects of similar shape and size that are near each other are 

considered as belonging to one region. 

 

 

    

(a) (b) (c) (d) 

Figure 5. Sobel edge operator processing. (a) Original image. (b) Image output after convoluting 

the input with dx and using Ostu’s method. (c) Image output after convoluting the input with dy 

and using Ostu’s method. (d) Shows the image after logically OR-ingimages in (b) and (c). 

 

 

   

(a) (b) (c) 

Figure 6. Form bounding boxes. (a) Bounding box for each object. (b) Bounding box with 

overlap removed. (c) Bounding box after removing small noise bounding boxes. 
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(a) (b) 

Figure 7. Incorrect bounding box segmentation. (a) Original image. (b) Bounding box result. 

 

 

We select five features for computing the fitness function of size and fourteen features 

for shape. These characteristic features and their explanations are shown as follows, the first five 

are size features and others are shape features: 

Width: The width of bounding box. 

Height: The height of bounding box. 

MajorAxisLength: length (in pixels) of the major axis of the ellipse that has the same 

normalized second central moments as the region. 

MinorAxislength: length (in pixels) of the minor axis of the ellipse that has the same 

normalized second central moments as the region. 

Axis Ratio: ratio of MajorAxisLength with MinorAxislength. 

Solidity: area of the region divided by the area within the Convex Hull. 

Extent: ratio of area to bounding box area. 

Weighted Density Distribution features: Twelve features are extracted by correlating the 

shape samples of the object inside the bounding box with weighted density distribution 

functions (WDD) [14, 15]. The samples are computed by dividing the height of the bounding 

box by 20. This value is empirically determined from prior work [15]. The length of the section 

of the object at each of these 20 horizontal segments is used as a shape sample for convolution 

and computation of the WDD features. 

For objects, each particle in the PSO is an n-dimensional vector where the dynamic 

range of each dimension n and objects with same value are assigned to the same cluster. The 

velocity is constrained to 2. The fitness function of size and shape are defined as follows: 

 

               (           )                  (            )                                     (3)  
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Since both fitness values have their individual effect on the result, we build a fuzzy 

logic controller (FLC) system to get the final fitness value with these two as the inputs.  

 

           (                        )                                                                               (4) 

 

 

 

Figure 8. Steps for applying Particle Swarm Optimization algorithm. 

 

 

Fuzzy logic is a form of multi-value logic derived from fuzzy set theory to deal with 

reasoning that is approximate rather than precise [16]. Fuzzy control is a control method based 

on fuzzy logic [17]. The fuzzy logic controller consists of three main modules described below: 

fuzzification, the inference engine, and defuzzification.  
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Fuzzification: The input membership functions take the inputs to the controller and 

produce a degree of membership for each fuzzy set. This value is usually designated by the 

symbol µ. Figure 9 shows the membership function takes as inputs the fitness value and assigns 

to that a degree of membership for each fuzzy set in the graph, where “s” represents “small”, 

“m” represents “medium”, “l” is large.  

Inference engine: Once the degrees of membership for each fuzzy set have been 

determined for a particular input, they are presented to the inference engine that determines 

which rules should be evaluated. Table 2 gives the fuzzy rule result.  

Defuzzification: Once the degrees of membership of the outputs have been found via 

the inference engine, the defuzzification process takes these values and translates them into an 

output dispatch signal. If multiple rules have been asserted, the center of mass of the weighted 

outputs is used. The output membership function is shown in Figure 9.  

Figure 10 shows sample results of PSO clustering with different fitness functions. 

 

 

                                      

Figure 9. Membership Function. 
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Table 2. Fuzzy rule. 

 fitnesssize fitnessshape fitnesstotal 

1 s s s 

2 s m s 

3 s l s 

4 m s s 

5 l s s 

6 m m m 

7 m l l 

8 l m l 

9 l l l 

 

 

  
 

(a) (b) (c) 

Figure 10. Sample results of PSO clustering with different fitness functions. (a) Original image. 

(b)                                     . (c)               (                        )  
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4. EXPERIMENTS 

Table 3 presents the true positive rate and true negative rate of image type identification 

for 2111 images by using three different algorithms with ten-fold cross validation [21].  

Decision tree provides the highest accuracy.  

 

 

Table 3. Result of image type identification. 

Algorithm True Positive Rate True Negative Rate 

MLP Backpropgation Neural Network [18] 96.26% 97.17% 

Support Vector Machine [19] 96.20% 96.13% 

Decision Tree [20] 97.62% 98.58% 

 

 

The method for separating subfigure panels in regular images is evaluated by generating 

the ROC curve [22] using a neural network with the architecture 5x5x1 (5 neurons including 

four features plus one bias in the input layer, 5 neurons in the hidden layer and one output 

neuron) and ten-fold cross validation. For illustration images we measure the performance by 

comparing the estimated number of panels with the manually generated ground truth. And we 

set the number of particles as 30 and number of iterations as 10. For Figure 11(a), the fitness 

value at every iteration is shown in Figure 11(b). Note that the fitness value reaches the optimal 

value at the fourth iteration. We obtain very promising results with 93.64% accuracy for regular 

(non-illustration) figure images and 92.1% accuracy for illustration images. Compared with our 

previous effort, this approach to locate subfigure panels is more robust. The fitness function of 

PSO includes not only the size but also the shape of each object, and is consequently able to 

identify similar shaped objects of different sizes. In addition, with n subpanels, the 

computational complexity will be O(n!) if we try every possible combination for subpanels. The 

PSO helps to reduce the complexity to be O(n). 
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Figure 11.  Input image and its fitness function. (a) Input image. (b)Fitness value function. 
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5. CONCLUSIONS  

Figure image segmentation is an important and necessary first step in annotating images 

for improved information retrieval for clinical decision support. This step helps subsequent 

image annotation and CBIR methods perform optimally. For accurate sub-figure image 

segmentation we first need to detect the image type. Regular images usually provide a strong 

inter-panel boundary which is used to detect the sub-figure panels. Finding subfigure panels in 

illustration images is more challenging. For success we use a combination of top-down and 

bottom-up approaches. The low variance line finding technique is like segmenting image in a 

top-down method, while, finding foreground objects and bounding boxes is akin to segmenting 

images in a bottom-up fashion. Steps from this method will be used as a initial step in indexing 

and retrieval of images and articles for from PubMedCentral at the National Library of Medicine 

in its iMedline project. 
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IX. A HYBRID COMPUTATIONAL INTELLIGENCE ALGORITHM FOR 

AUTOMATIC SKIN LESION SEGMENTATION IN DERMOSCOPY IMAGES 

 

Beibei Cheng, R. Joe Stanley, William V, Stoecker, Thomas Szalapski, 

Ganesh K. Venayagamoorthy, Hanzheng Wang 

 

ABSTRACT 

In this paper, an unsupervised approach based on evolving vector quantization (EVQ) is 

presented for enhancing dermatology images for skin lesion segmentation. Vector quantization 

(VQ) as a famous compression technique has been widely used in image signal compression and 

speech signal compression. The EVQ algorithm extends the Linde, Buzo, and Gray (LBG) 

vector quantization method with particle swarm optimization to cluster the pixels inside the 

image based on merging similar gray value pixels. The proposed enhancement technique is 

evaluated using 100 dermoscopy skin lesion images for skin lesion segmentation. The EVQ 

algorithm is applied to the individual color planes red, green, and blue, respectively. 

Segmentation results using these three planes are compared and scored based on manual borders 

obtained from three dermatologists. In addition, differential equation-based particle swarm 

optimization is implemented and their results are compared with the standard PSO.  
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1. INTRODUCTION 

 

Malignant melanoma is the most deadly form of skin cancer (Jemal et al, 2009). The 

incidence of melanoma cases, especially melanoma in situ, is increasing rapidly (Jemal et al, 

2009). This adds to the importance of further developing early detection methods such as those 

based on digital image analysis. Automatic lesion segmentation is a fundamental step in 

computer-based image analysis of pigmented skin lesions. Numerous methods have been 

proposed for lesion segmentation in dermoscopy images including: 1) a partial differential 

equations (PDE)-based system (Chung and Sapiro, 2000); 2) an independent histogram pursuit 

(IHP) algorithm (Gomez et al,2008); and a watershed-based algorithm (Wang et al, 2010). In 

this research, a novel evolving vector quantization (EVQ) is presented for image enhancement 

for lesion segmentation. The EVQ algorithm extends the the Linde, Buzo, and Gray (LBG) 

vector quantization method with particle swarm optimization (PSO).  

LBG vector quantization (Linde et al, 1980), is an iterative algorithm which 

alternatively solves the two optimality criteria: 1) nearest neighbor condition, the encoding 

region should consists of the vectors that are closer than any of the other codevectors, and: 2) 

centroid condition, the codevector should be the average of all the training vectors that are in the 

encoding region. The basic steps of the LBG algorithm are: 

1. Determine the number of codewords, N, or the size of the codebook.  

2. Select N codewords at random, and let that be the initial codebook.  The initial codewords 

can be randomly chosen from the set of input vectors.  

3. Using the Euclidean distance measure clusterize the vectors around each codeword.  

4. Compute the new set of codewords. 

5. Repeat steps 2 and 3 until the either the codewords don't change or the change in the 

codewords is small. 

PSO is a form of evolutionary computation technique developed by Kennedy and 

Eberhart (1995). In the swarm intelligence algorithm, each particle has random velocity and 

memory that keeps track of the previous best position and corresponding fitness. The previous 

best value of the particle position is called the ‘pbest’. It has another value called ‘gbest’, which 

is the best value of all the ‘pbest’ positions in the swarm. The basic concept of PSO is that each 

particle in the swarm move toward its pbest and gbest locations at each time step. In this 

research, 100 skin lesion images from dermoscopy research are used as the benchmark. An 

overview of this project investigated is shown in Figure 1. The remaining sections of this paper 
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include: 1) pre-processing, 2) Evolving Vector Quantization methodology, 3) post-processing, 

4) results and discussion, and 5) conclusions and future work.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1. Overview of lesion segmentation process. 
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2. PREPROCESSING  

A few noise sources such as hair, black border and vignetting affect lesion 

segmentation. The preprocessing approach investigated is as follows: Firstly, a hair removal 

method with the morphological closing operator is introduced to remove hairs if they exist. An 

example is given in Figure 2. Secondly, the vignetting removal method is detected in the red 

plane (because it is least affected by the lesion) and normalized for each of the other two planes. 

Thirdly, the black border is cropped from the innermost point of each black rim (Wang et al, 

2010). Also, a compensation step that involves resizing the image to256x256 is applied before 

filtering noise.  

 

 

  

                                               (a)                                                  (b) 

Figure 2. Preprocessing example. (a) Original image. (b) Image after hair removal. 

 

 

 

 

 

 

 

 

 

 

 

 

 



www.manaraa.com

153 

 

 

3. EVOLVING VECTOR QUANTIZATION 

For the VQ of dimension M and size N, each particle in PSO is a (MxN) dimensional 

vector, representing a possible codebook. The range of each dimension is the dynamic range of 

the pixel value, which is 256. The velocity is constrained to 25 (10% of the pixel value range). 

The fitness function is defined as: 

 

        ∑ ∑    (   (   )        (   ))   
   

   
                                                        (1)                                                            

 

where sig(m,n) represents the input image and re_sig(m,n) represents the reconstructed image 

after quantization.  The PSO procedures for VQ are summarized in Figure 3. During each 

iteration, the particles fly in the solution space to search for better fitness and they could 

converge to an optimal solution representing an optimal VQ codebook. After each iteration, the 

input image becomes the reconstructed image which has the best fitness value. Two different 

PSO version tried in this work are described in Section 3.1 and 3.2. 

 

3.1 STANDARD PSO (Valle et al,2008 ) 

The following equations are used to update particle velocity and position:  

 

                         (               )           (              ) (2)                         

                                                                                                                                 (3) 

 

where 1≤ i≤ particle number,       and       are the random values between 0 and 1. In this 

research, w = 0.1,    = 1 and    = 1. There are four cases examined. In case 1, population size is 

20, iteration number is 10; in case 2, population size is 20, iteration number is 5; in case 3, 

population size is 10, iteration number is 10; in case 4, population size is 10, iteration number is 

5. For example, Figure 4 gives the original image and output image of each iteration using 

standard PSO in case 3. 
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Figure 3. Evolving vector quantization algorithm flow chart. 

 

 

3.2 DIFFERENTIAL EQUATION-BASED PSO (Zhang and Xie, 2003) 

The PSO algorithm is used for determining the best codebook for representing the 

compression coefficients for the image. The differential equation-based PSO (Zhang and Xie, 

2003) is investigated to see if an improvement in the compression coefficients can be obtained 

based on the fitness equation (1). In DEPSO, the differential equation operator can be applied to 

improve the pbest of the PSO particles based on randomly choosing four different pbest 

particles from the trained PSO algorithm. Let    be represented as follows.  Then            

gives the updated row entry for the codebook,            is given as follows. 
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      (             )  (             )                                                                    (4) 

            {
                         (          )         (          )

                       (          )         (          )
                        (5) 

 

 

 

          (a)                         (b)                         (c)                       (d)                         (e)                           

 

          (f)                          (g)                        (h)                         (i)                         (j) 

 

                                                                      (k) 

Figure 4. Example of image output within ten iterations. (a) Original image. (b) ~ (k) output 

image within 1~10 iteration.  

 

 

The same four cases as section 3.1 are examined as well. Upon completing the PSO and 

DEPSO algorithms for performing EVQ, the codebook is determined for the input image, 

yielding the transformed or enhanced image.   

 

3.3 POSTPROCESSING  

Otsu's method (Sezgin and Sankur, 2003) is implemented with the enhanced image 

using the algorithm from the previous steps, which chooses the threshold to minimize the intra-
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class variance of the black and white pixels. This converts the gray images into binary images. 

In order to mitigate missing lesion pixels, a relaxed threshold was used, which is the first gray 

value higher than the value from Otsu’s method.  Then, the second-order B-Spline closed curve 

fitting (Wang et al, 2010) is applied to the border of the EVQ segmentation. The final border 

overlay will then be generated (Figure 5). 

 

 

 

            (a)                         (b)                            (c)                        (d)                            (e)   

Figure.5. Post-processing. (a) original image. (b) output image after EVQ. (c) output image after 

Otsu's method. (d) image after B-Spline smoothing. (e) image overlay: dermatologist border 

(blue) EVQ (green). 
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4. RESULTS AND DISCUSSION 

The presented enhancement and threshold methods for lesion segmentation were 

applied to 100 dermoscopy skin lesion images. These images have been used in previous studies 

(Wang et al, 2010). The segmented lesions are evaluated based on comparison to an average 

border obtained from borders manually determined by three dermatologists. The error of the 

segmented lesion from the average dermatologist border is found as follows. Let A denote the 

automatically segmented lesion and xor represent the exclusive-OR operation. The percentage 

border error E is given by    (              )             , where         is the average 

dermatologist border. The average error over 100 lesions is presented in Table 1 for the PSO and 

the DEPSO for the four different cases described in section 3. 

 

 

Table 1. Standard PSO and DEPSO error result with three planes. 

 Blue Green Red 

Standard  PSO Case1 28.71 33.39 49.36 

Case2 21.87 20.36 40.85 

Case3 20.37 36.88 39.98 

Case4 19.84 25.04 39.50 

DEPSO Case1 25.93  28.96 45.86 

Case2 24.69 20.27 37.69 

Case3 19.66 31.59 40.64 

Case4 18.67 24.68 38.49 

 

 

 

This table shows that blue plane always gives the best result, confirming results of 

Celebi et.al (2007).  For standard PSO, case 4 in blue plane has the lowest error value within the 

smallest population size and the iteration. DEPSO generally has slightly better output than 

standard PSO.  
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5. CONCLUSIONS AND FUTURE WORK  

The EVQ algorithm can be considered as a clustering algorithm which extends the 

Linde, Buzo, and Gray (LBG) Vector Quantization method with Particle Swarm Optimization in 

order to cluster the pixels inside the image based on merging similar gray value pixels. After 

that, the enhanced image could be easily segmented.  

This project uses Otsu's method to finish the image segmentation.  In future work, some 

more intelligent image segmentation methodologies will be developed within EVQ as the 

preprocessing technique. Furthermore, supervised EVQ could be explored to improve the fitness 

function. 
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ABSTRACT 

In this research, a novel computational intelligence-based algorithm to detect artifacts, 

specifically arrows, in medical images is presented. Image analyses techniques are developed to 

find the symbols and text automatically. Features are computed from the shape of arrow for the 

discrimination of arrows from other artifacts. We investigate a biologically-inspired 

reinforcement learning (RL) approach in an adaptive critic design (ACD) framework to apply 

Action Dependent Heuristic Dynamic Programming (ADHDP) for arrow discrimination based 

on the computed features. Experimental results for ADHDP are compared with feed forward 

multi-layer perception (MLP) back-propagation artificial neural networks (BP-ANN), particle 

swarm optimization (PSO) for training of a MLP neural network, genetic algorithm (GA) for 

training of a MLP neural network, k-nearest neighbor (KNN), and support vector machine 

(SVM). 
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1. INTRODUCTION 

 

The detection of medical image artifacts such as arrows is important to highlighting 

supplemental and context-based information which may be helpful in understanding medical 

images.  It is necessary to have an accurate algorithm in discriminating arrows from other 

characters and symbols.  There are several methodologies that have been implemented to find 

arrows in previous research. Laurent Wendling and Salvatore Tabbone [1] proposed a method in 

recognizing arrows based on the aggregation of geometric criteria using the choquet interal; J.E. 

den Hartogtz and T.K. ten Katet [2] gave a solution of finding arrows in utility maps using a 

neural network; Jongan Park, Waqas Rasheed, and Junguk Beak [3] proposed a way of 

identifying arrow signs for Robot Navigation using a camera-based method.   

Extending techniques from previous research, the arrow symbols present in the medical 

images in our experimental data set have variety in shape and size. Arrows do not necessarily 

have to be straight (arrow 3, arrow 4) and the shape of the arrows can change (arrow 2) as you 

can see in Figure 1(a). Furthermore, a noise example can include characters and symbols, which 

may be of similar size to arrows as shown in Figure 1 (b). Therefore, a general and robust arrow 

detection algorithm is needed for discrimination from other medical image artifacts.  

 

 

         

                                         (a)                                                           (b)             

Figure 1. Medical image examples. (a) Arrow image example. (b) Noise image example. 
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Since both text and symbol objects are white or black, they can be segmented by some 

image analysis techniques. After generating the binary image containing only text-like and 

symbol-like objects, features sets are used as input to classifiers. An overview of the algorithm 

investigated is shown in Figure 2.  This study uses 144 medical images annotated by modality 

(radiological, photo, etc.) selected from 2004-2005 issues of the British Journal of Oral and 

Maxillofacial Surgery, including 79 images with one or more arrows and 65 images with no 

arrows. The image analysis techniques are follows:  

1. Convert RGB images into gray images and inverted gray images. 

2. Use Otsu's method [4], which chooses the threshold to minimize the intra-class variance of 

the black and white pixels to convert gray images into binary images. 

3. Remove objects that are considered small and objects that are considered short.  

4. Get the edge of object with gray drop. The value of gray drop is 30. If the absolute value of 

center pixel minus NW, N, NE, W, E, SW, S, SE is greater than the gray drop, this pixel 

will be marked. (Figure 3) 

5. Compare the edge image getting after step 4) with the image getting after step 3), keep the 

objects with the same bounding box size. 

6. Or image result with inverted image result.  

 Figure 4 presents an image example of the image processing steps for the original 

image to generate the binary mask for feature calculations. 

The remaining sections of this paper include: 1) Feature Generation, 2) Adaptive Critic 

Designs Methodology, 3) Other Classification Methodologies, 4) Results and Discussion, 5) 

Acknowledgement, and 6) Conclusions and Future Work.  
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Figure 2. Overview of arrow detection and discrimination process. 
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Figure 3. Edge detection. 
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                     (a)                                  (b)                               (c)                                  (d)  

        

                       (e)                                (f)                                   (g)                               (h) 

  

                                       (i)                                 (j)                                  (k) 

Figure 4. Image processing algorithm example.  (a) Original image. (b) Grey image. (c) Image 

by using threshold. (d) Inverted image by using threshold. (e) Image after noise removal. (f) 

Inverted image after noise removal. (g) Image by using edge detection. (h) Invert image by 

using edge detection. (i) Image by comparing (e) to (g) with the bounding box size. (j) Image by 

comparing (f) to (h) with the bounding box size. (k) Final image by or (i) and (j). 
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2. FEATURE GENERATION  

After generating the binary image containing only text-like and symbol-like objects by 

using above techniques, certain features are selected that will help in the identification of arrows 

from the rest of objects. This selection process is very important, because the identification stage 

depends heavily upon this process. We select twenty-two features that will help us in 

distinguishing the arrows. These characteristic features and their explanations are shown as 

follows: 

MajorAxisLength: length (in pixels) of the major axis of the ellipse that has the same 

normalized second central moments as the region. 

MinorAxislength: length (in pixels) of the minor axis of the ellipse that has the same 

normalized second central moments as the region. 

Axis ratio: ratio of MajorAxisLength with MinorAxislength. 

Normalized area:  area of the region divided by the whole image. 

Solidity: area of the region divided by the Convexhull Area. 

EulerNumber: equal to the number of objects in the region minus the number of holes in those 

objects. 

EquiDiam: the diameter of a circle with the same area as the region. 

Extent: ratio of area to bounding box area. 

AvgSkelDist: average width of object.  

MinPixelNo:  for two line x=X and x=X+W (X is the top left point of bounding box horizontal 

value; W is the width of bounding box), the minimum number of pixels of intersection for 

region and each line as shown in Figure 5. 

 

 

 
x=X x=X+W x=X x=X+W  

                                                         (a)                                (b) 

Figure 5. MinPixelNo feature. (a)Arrow.  (b) Noise. 
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Weighted Density Distribution features: other arrow features are extracted by correlating the 

shape samples of the arrow with weighted density distribution functions (WDD) [5-6]. Let 

    (  )  (  )    (  )  be the sequential of shape samples collected, where m is the 

number of samples collected at a constant rate and   (  )     , where     . Figure 6 

shows the WDD functions used in the experiments. Twelve WDD-based features are computed. 

Each of the WDD function is decomposed into 12 discrete points for WDD feature calculations. 

Let    denote the WDD function in Figure 6(a),    denote the WDD function in Figure 6(b) 

and so on. The gray horizontal position marker for each WDD function shown in Figure 6 points 

to the reference position for which WDD features is computed. The reference position 

corresponds to the current sample s. Six WDD features (  ( )     ( ) ) corresponding to the 

measurement at sample s are computed according to the following expression: 

 

   ( )  ∑  ( )  
   
      (      )                                                                                       (1) 

 

For            Six additional features (  ( )      ( ) ) are computed by correlating the six 

WDD functions with the sequence of absolute differences between samples value as follows  

 

  ( )  ∑   ( )   (   )   
   
      (      )                                                                   (2)             

 

In this research, the shape samples of arrow are computed in the following way: divide the 

height of the bounding box of arrow by twenty and get line y=   y=  …, y=   . The 20 

samples is the length of line y=   to y=    intersected with this arrow, as you can see in Figure 

7, the red lines. After all, twelve WDD features could be generated according to these samples.   

Therefore, with the 144 medical images as the input, after image processing and feature 

extraction, there are 154 arrow objects and 276 text/noise objects generated. They are manually 

catalogued with class 1 (arrow objects) and class 0 (other objects). To evaluate these features, 

the attribute selection criteria are information gain [7] and chi-square [8] by Weka®. Table 1 

shows information gain value and chi-square value for each feature.  

The orientation of each object can impact feature generation. For example, the feature 

MinPixelNo is supposed to be smaller for arrow objects than for others because of the accurate 

point of arrow. But since the various shapes and sizes of arrows, as can be seen in Figure 8, this 

value can still be quite large. This arrow is falsely identified as noise by the MLP 

backpropgation neural network.  
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To improve the outcome, rotating the region is an effective solution. Figure 9 shows the 

arrow image output with different rotation values (0 degree, 15 degree, 30 degree, 45 degree, 60 

degree, 75 degree, 90 degree). Therefore, seven data sets will be generated after applying feature 

extraction to these seven image sets. 

 

 

    

(a)                    (b)                      (c)                    (d)                     (e)                     (f) 

Figure 6. The WDD functions used to compute arrow features [6]. 
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Figure 7. Samples for generating WDD features. 
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Table 1. Information gain and chi-square value. 

Feature_Name Info_gain_value Chi_square_value 

MajorAxisLength 0.5875 287.0769 

MinorAxislength 0.1924 106.3261 

Axis Ratio 0.4380 217.0534 

Normalized area 0.5052 248.0459 

Solidity 0.1038 58.169 

eulerNumber 0.1587 73.3162 

EquiDiam 0.5628 278.9818 

Extent 0.2260 112.2445 

AvgSkelDist 0.4566 230.6459 

MinPixelNo 0.1555 75.0847 

f1 0.1837 109.0502 

f2 0.2504 141.9929 

f3 0.2768 155.7666 

f4 0.1658 95.7217 

f5 0.0457 27.9648 

f6 0.4004 213.7316 

f7 0.3361 187.9629 

f8 0.1205 71.3723 

f9 0.1350 81.8844 

f10 0.0538 32.9075 

f11 0.1837 25.5232 

f12 0.2768 159.0519 
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x=X x=X+W  

Figure 8. Falsely identified arrow. 

 

 

                 

 

Figure 9.  Arrows with different rotation value. 

 

An ACD-based arrow discrimination methodology is then applied in the presence of 

these seven data sets. So the decision of arrow/no-arrow is made by the global data set but not 

the single data set. The input for the neural network is the features generated from those seven 

different orientations based on rotation. 
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3. ADAPTIVE CRITIC DESIGN METHODOLOGY  

Reinforcement learning is the problem faced by an agent that must learn behavior 

through trial-and-error interactions with a dynamic environment. It is a computational approach 

to learning whereby an agent tries to maximize the total amount of reward it receives when 

interacting with a complex, uncertain environment [9]. The RL has been developed in various 

applications such as neuro-computing [10], and multi-resolution object recognition [11]. 

The adaptive critic design provides a workstation for implementing RL. An ACD 

approximates the neuro-dynamic programming by using an action and a critic network, 

respectively [12]. This model employs reinforcement learning (RL) through direct neural 

dynamic programming (Direct NDP) [13]. The term “direct” is influenced by the adaptive 

control literature where “direct adaptive control” means no plant model, and thus no plant 

parameter estimation takes place but instead certain plant information is used directly to find 

appropriate and convergent control laws and control parameters, which is required in this 

research.  Direct NDP is a model independent approach to action dependent heuristic 

programming (ADHDP). 

Figure 10 shows the model of ADHDP used in this study, which is based on the model 

in [12]. In the current problem setting, let the discounted total reward to go R(t) at time t be 

given by 

 

 ( )   (   )    (   )    ∑      

   
 (   )                                                      (3)        

 

Where the function of  ( ) is the reinforcement value at time t, and   is a discount factor 

between 0 and 1. 

The critic network is used to provide an output J(t), which is an approximation for R(t), 

the weighted total future reward to go. The reward function R(t) at time t is given by Eq. (3).  

We define the prediction error, and consequently the Bellman error, for the critic 

element as: 

 

  ( )    ( )    (   )   ( )                                                                                               (4)     

 

and the objective function to be minimized in the critic network is 
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  ( )  
 

 
  

 ( )                                                                                                                           (5) 

  

In the action network, the weight update in the action network can be formulated as 

follows. 

 

  ( )   ( )                                                                                                                            (6)    

      

The principle in adapting the action network is to backpropagate the error between the 

desired ultimate performance objective, denoted by R*, and the approximate function J from the 

critic network. Since   has been defined as the reinforcement signal for “success,” R* is set to 

  /(1-α) has in the direct NDP design paradigm and in subsequent case studies. In this paper,    

is set to be zero for simplification.   

   

 

 

Figure 10. Schematic diagram of ADHDP. 

 

 

An artificial neural network is chosen for implementation of the action and critic 

networks. The structure of the neural networks for both the action and critic networks are 

implemented as a multi-layer feed forward (MLP) neural network. It consists of the input layer, 

the hidden layer and the output layer. The hidden layer neurons have a sigmoid transfer function 

while other layers have linear neurons. For the action network, the architecture is 23x5x1, with 

twenty-two features and a bias in the input layer, five nodes in the hidden layer and one output 

layer. For the critic network, the architecture is 24x5x1, with twenty-two features, a bias and the 
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output from action network in the input layer, five nodes in the hidden layer and one output 

layer.  

A ten-fold cross validation methodology is used for training/test set generation for the 

neural network [14]. The neural networks are trained up to 1000 epochs, using online 

(Stochastic/Delta) learning. In this case, the next input pattern is selected randomly from the 

training set, to prevent any bias that may occur due to the sequences in which patterns occur in 

the training set. For each training feature, 7 different data states (original image feature data set 

and its six different rotated orientation feature data sets) are applied as the input one by one for 

both the action network and the critic network to update the weights. If the difference between  

action network output u(t) and the target is less than 0.5, the reinforcement signal r(t) takes the 

reward “0”, otherwise, r(t) takes the punishment “-1”.  The learning rates for both critic and 

action network are set to be 0.001. The discount factor   is set to be 0.1. The test set is the 

original image feature data set only. 

With the target value for the arrow data set  to 1 and the no-arrow data set to 0, action 

network outputs after testing are between -1 and 1. Receiver operating characteristic (ROC) 

curves are generated for classification results based on the neural network outputs obtained for 

the ten-fold cross cases [15]. The ROC curve is a plot of the sensitivity for a binary classifier 

system as its discrimination threshold is varied. The ROC curve represents equivalently the 

fraction of true positives versus false negatives rate.  
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4. OTHER CLASSIFICATION ALGORITHMS  

4.1 MLP BACKPROPGATION NEURAL NETWORK  

A multilayer perception backpropagation neural network is investigated for arrow 

discrimination [16]. Sigmoid transfer functions are used in the hidden layers, and a linear 

transfer function is used in the input and output layer, the neural network architecture is 23x5x1. 

The neural networks are trained up to 1000 epochs, using online (Stochastic/Delta) learning, 

ROC curves are generated by the ten-fold cross strategy.  

 

4.2. PARTICLE SWARM OPTIMIZATION (PSO) FOR TRAINING OF A MLP 

NEURAL NETWORK  

In swarm intelligence algorithm [17], each particle has random velocity and memory 

that keeps track of previous best position and corresponding fitness. The previous best value of 

the particle position is called the ‘pbest’. It has another value called ‘gbest’, which is the best 

value of all the ‘pbest’ positions in the swarm. The basic concept of PSO is that each particle in 

the swarm move toward its pbest and gbest locations at each time step. The basic concept of 

PSO is that each particle in the swarm move toward its pbest and gbest locations at each time 

step. (Figure 11) 

 In this research, PSO is used to train a MLP neural network, which has the same 

architectures and training epochs as the last one. To train this neural network, all neuron weights 

are together to contribute one of the particles.  Each particle is updated toward the global best 

position, which will minimize the difference between the neural network output and target 

value. Detail of this algorithm is described in [18]. 
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Figure 11. Basic concept of PSO. 
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4.3. GENETIC ALGORITHM (GA) FOR TRAINING OF A MLP NEURAL NETWORK  

Genetic Algorithm is a kind of optimization by using selection, crossover, mutation and 

elitism operators [19]. This MLP neural network still has the same architectures and training 

epochs as usual.  In the training procedure, all neuron weights are put together as the parents 

firstly, after applying the selection, crossover and mutation operators, offspring could be 

generated. The next offspring is chosen based on whether parent or its offspring minimizes the 

difference between the neural network output and target value.   
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5. RESULTS AND DISCUSSION  

Adaptive Critic Designs is applied for the arrow classification. The output is compared 

with MLP backpropgation neural network, PSO for training of a MLP neural network, GA for 

training of a MLP neural network. Ten-fold cross testing strategy is implemented for all of them. 

ADHDP and other three neural networks are all build on the same twenty-two input features, 

use the same number of training epochs (1000). Since the output of the neural network is not an 

accurate class number, the ROC curve is generated as the comparison criteria.  AUC represent 

the area under the ROC curve. Figure 12 shows the ROC curves and AUC result for these four 

algorithms. 

 

 

 

Figure 12. ROC curve and AUC (area under curve) for neural networks. (a) MLP 

backpropgation NN. AUC=0.9672. (b) PSO based NN. AUC=0.9681. (c) GA based NN. 

AUC=0.8839. (d) Direct NDP. AUC=0.9790. 

 

 

In addition to comparing the discrimination results from the different classifiers using 

AUC, as given in Figure 12, we used a highest true positive rate and highest true negative rate 

with minimum difference between them from the ROC curves.  Therefore, the true positive rate 

and true negative rate for (a), (b), (c), (d) are 91.53% and 91.56%, 91.53% and 92.77%, 87.66% 

and 82.97%, 92.86% and 92.03%.  

Based on the AUC and the true positive and true negative comparison, we found that 

adaptive critic design achieved the best results among the different classifiers investigated. In 
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direct NDP, the critic network is used as the performance evaluation; the reward of 

reinforcement learning is helping to update its weight and the output J(t). Therefore, the action 

network could update its weight based on total seven state feature data instead of only one state 

feature for other techniques. The global feature data improves the accuracy of discriminating 

arrow or no-arrow.   

Furthermore, K-nearest neighbor (KNN) [20] and Support Vector Machine (SVM) [21] 

are also applied to the same data set. In KNN algorithm, generally Euclidean distance function is 

used to calculate distance between two points. K is set to be fifteen. In SVM algorithm, 

polynomial is used as kernel function value to train the data.  The true positive rate and true 

negative rate for KNN and SVM are 93.50% and 88.76%, 90.90% and 93.03%, respectively.   
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6. CONCLUSIONS AND FUTURE WORK 

This paper introduces the ACD design to image recognition using ADHDP algorithm. 

The result is very promising. ADHDP demonstrates greater strength and superiority than 

existing methods. In addition, the features extracted as the input of different classifiers are 

approved to be significantly useful.  

The future work will include finding the exact orientation of each arrow. In addition, 

other adaptive critic design algorithms such as action dependent dual heuristic dynamic 

programming (ADDHP) or action dependent globalized dual heuristic dynamic programming 

(ADGHP) could be implemented as comparison. 
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SECTION 

2. CONCLUSIONS 

 

This dissertation proposes novel data fusion techniques, using both machine learning 

and computational intelligence algorithms, to improve image classification accuracy. Both 

feature- level and decision-level data fusion techniques were investigated and developed for a 

varied range of applications. Feature level fusion techniques were explored for not only skin 

cancer diagnosis but also arrow detection, by applying artificial neural network, evolutionary 

algorithm, particle swarm optimization, decision tree and clustering algorithms; decision-level 

fusion approaches included both fuzzy logic, and a voting algorithm for a graphic image type 

classification. 

This research suggests feature-level data fusion techniques are useful for the removal of 

negative related/unrelated features and make the classification decision. While the decision level 

data fusion techniques are useful to combine the resource information and improve the 

classification result. Experimental results indicate that integrating various image processing 

techniques, feature-level data fusion techniques, and decision-level data fusion techniques, as 

proposed in this dissertation, can achieve high classification accuracy. 

The contributions of this work are summarized in five journal papers and five 

conference papers, which are included in this dissertation. 
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